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Abstract

Autonomous driving systems rely on robust motion planning to safely navigate
the vehicle. Prior approaches in motion planning literature for driving are merely
evaluated with open-loop metrics or synthetic simulators. The nuPlan dataset offers
the first large-scale benchmark in complex real-world scenarios, enabling both open-
and closed-loop evaluation. This thesis provides a comprehensive overview of data-
driven simulation with insightful experiments on nuPlan. Rule-based approaches,
like simple lane-following policies, outperform recent learning-based planners in
closed-loop simulation. Surprisingly, a simple multilayer perceptron that ignores all
vehicles and only requires a route centerline as scene context achieves the best results
in open-loop ego-forecasting. Consequently, we combine our insights and propose a
state-of-the-art hybrid planner that won the nuPlan Challenge 2023.
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1 Introduction

Self-driving cars enable automatic navigation of vehicles on public roads without
human intervention. Thereby, autonomous vehicles have immense potential to improve
and redefine transportation in the future. Specifically for people who are unable to
drive, such as disabled or elderly community members, self-driving vehicles could
provide independent mobility. Moreover, autonomous vehicles can improve road
safety by reducing accidents from human error. Despite significant advances in recent
years, the development of reliable, safe, and fully autonomous vehicles remains an
unsolved technological challenge.

The predominant approach in the industry for autonomous driving is the modular
pipeline architecture. Modular pipelines separate a driving approach into manage-
able sub-tasks, i.e., perception, prediction, planning, and control. The perception
module creates an interpretable understanding of the traffic environment based on
high dimensional sensor data (i.e., RGB images or LiDAR scans). Over the last
decade, perception systems have transitioned to learning-based techniques powered
by advancements in deep learning for computer vision [27, 19, 28, 90, 135]. Publicly
available datasets enable researchers to train and evaluate perception methods on
real-world driving data [42, 16, 105]. In modular pipelines, the planning module uti-
lizes the perception output to determine the intended future motion of the self-driving
vehicle.

The field of motion planning has yet to converge to standardized methodologies,
datasets, or evaluation schemes. Research either focuses on rule-based or learned
planning, with little overlap in comparing these paradigms. Furthermore, self-driving
systems that incorporate planning should be assessed with closed-loop (or online)
evaluation, where planning decisions determine the future vehicle states. However, this
requires simulation or testing on real vehicles. Real-world testing has substantial safety
concerns and high expenses, while simulators exhibit overly simplistic traffic scenarios
that are manually designed. Thus, a great amount of planning research is conducted
with open-loop (or offline) evaluation on real-world recordings, where planning results
are compared to an expert without affecting the vehicle’s future. Displacement metrics
are most common in open-loop benchmarks [16, 114], as an attempt to measure
human-like driving behavior. Nonetheless, prior works demonstrated that open-loop
metrics can be misleading for actual driving performance [31, 11].

The nuPlan dataset marks a new era in vehicle motion planning as the first large-scale
planning benchmark for data-driven simulation [18]. Specifically, nuPlan offers a

11



Chapter 1. Introduction

platform for open-loop evaluation and closed-loop simulation with easy integration
of rule-based and learning-based planners. In contrast to existing simulators [36],
nuPlan enables training and simulation based on traffic scenarios encountered in the
real world.

Over the course of this thesis, we, a collaborative group of researchers, engaged in
the inaugural nuPlan Challenge 2023. The challenge evaluates a submitted planner in
several sub-tasks with open-loop and closed-loop metrics. Our proposed method, the
Predictive Driver Model (PDM), outperformed a set of 24 international competitors
and ranked first on the leaderboard. The main focus of this thesis is to provide
detailed descriptions and in-depth experiments of the proposed collection of planners.
Since the presented methods emerged in a team effort, I remark team contributions
with the plural pronoun “We” and personal contributions with the singular pronoun
“I” throughout this thesis. Moreover, I will clearly outline my role in each presented
method (see Chapter 4). The contributions of this thesis are:

• A comprehensive introduction to data-driven simulation, with the first empirical
study on rule-based and learning-based approaches for vehicle motion planning
in nuPlan.

• A family of state-of-the-art planners for open- and closed-loop metrics that
expose shortcomings of common evaluation schemes and recent planning ap-
proaches.

• A realistic assessment of the current research on vehicle motion planning, with
discussions on misconceptions, challenges, and future directions.

The rest of this thesis is structured as follows. In Chapter 2, I present related work in
self-driving literature about modular pipeline systems, data-driven simulation, and
the task of vehicle motion planning. Specifically, I examine rule-based and learning-
based approaches for planning. In Chapter 3, I introduce the nuPlan framework with
background information about the dataset, the competition, the evaluation, and the
simulation pipeline, together with an overview of baseline planners. Chapter 4 provides
a complete description of our proposed methods for planning and ego-forecasting.
In Chapter 5, I explain the experimental setup and present the results on the
benchmark and leaderboard. Moreover, I conduct further ablation studies to examine
the proposed methods. Finally, Chapter 6 discusses the results in consideration of
the current research landscape while providing limitations and concluding remarks
on this work.
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2 Related Work

In this Chapter, I introduce prior work in autonomous driving literature. Section 2.1
presents related literature for modular pipeline systems. Moreover, Section 2.2 deals
with data-driven approaches for simulation. In Section 2.3, I introduce prior strategies
for planning with rule-based and learning-based systems.

2.1 Modular Pipeline
The modular pipeline approach breaks down the autonomous driving task into
separately managed components [63]. Each component is designed for a specific sub-
task, allowing for independent development and high modularity. Classical modules
incorporate perception, prediction, planning, and control.

Perception. The task of perception is to interpret the sensor data and provide a
comprehensive understanding of the environment. The perception module typically
processes a combination of LiDAR, RGB camera, and localization sensor data. Sub-
fields for perception in autonomous driving include object detection [27, 19, 28,
90, 135], semantic segmentation [69, 10, 70], lane detection [4, 74, 83], occupancy
prediction [8, 9, 53, 57], or map construction [78, 93]. In the perception field, several
datasets enable training and evaluation with real driving data. These include the
KITTI [42], nuScenes [17], or Waymo [105] datasets.

Prediction. The prediction task is to forecast the perceived entities over a defined
horizon. In recent literature, prediction primarily focuses on learning-based forecasting
of vehicles [33, 34], pedestrians [2, 45], or a combination of actors [61, 100, 133].
However, prior work demonstrated that simple forecasting methods, such as constant
velocity or acceleration models, are fast but surprisingly effective [103, 120]. Due to
the underlying uncertainty of the task, prediction systems commonly output multiple
plausible future trajectories of nearby actors in the environment. There are several
datasets and benchmarks for prediction, including Lyft [52], Argoverse 2 [119], or
nuScenes [17].

Planning. Given the perception and prediction outcome, the planning module
determines the actions and behavior of the ego vehicle’s future. The task encom-
passes diverse objectives, such as safety, comfort, and traffic rule compliance. The
module optionally distinguishes between high-level route planning towards a global
goal, behavior planning for decision-making, and motion planning for precise future
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Chapter 2. Related Work

positions of the vehicle [85]. The output of the planning modules is typically a single
(or uni-modal) trajectory given to the control module. Previous benchmarks for
planning used prediction datasets for open-loop ego-forecasting [16, 52] or simplistic
simulators [36]. CommonRoad employs data-driven simulation for planning [3], with
a relatively small size of scenario recordings and restricted usage of learning-based
planners. The nuPlan benchmark offers the first open- and closed-loop simulator [18],
based on a large-scale dataset with integrated rule-based and learning-based planning
baselines.

Control. The goal of the control module is to convert the planner output into
low-level commands for the ego vehicle. The commands generally include steering,
accelerating, and braking. Methods from classical control theory, such as Proportional-
Integral-Derivative (PID) controllers, are commonly used in self-driving applica-
tions [89, 30, 95]. Optimal control methods, such as Model Predictive Control
(MPC) [37], are more advanced by anticipating the system dynamics and formulating
the task as an optimization problem.

Ultimately, modular pipelines are the predominant approach in the industry and are
used by companies such as Tesla [107], Waymo [115], or Motional [81]. During the
2005 DARPA Grand Challenge, a desert race for driverless cars with increased public
attention, several teams with modular systems demonstrated a technological leap
for autonomous driving [15, 108]. Since then, there has been an extensive amount of
research on modular pipelines [7, 73, 111, 130, 44, 54, 57, 62] with discussion on their
benefits. The modules operate independently for the most part, enabling specialized
and faster development in parallel. Each module has well-defined interfaces that
support generalization and human interpretation. Interpretable representations can
(under certain conditions) provide safety guarantees [104].

Another driving paradigm in literature is end-to-end autonomous driving [88, 14,
65, 25, 109, 29, 23, 89, 30], which learn the entire driving task from an input (e.g.,
raw sensor data) to a driving output (e.g., vehicle controls or trajectories). Thereby,
the model can automatically learn features that appear relevant for the driving task.
In contrast to modular pipelines, end-to-end circumvent error propagation between
intermediate stages. End-to-end driving stacks are generally more straightforward in
development and avoid labor-intensive data annotation to train separate modules.
On high-fidelity simulators, such as CARLA [36], end-to-end models demonstrated
on-par performance compared to a recent modular approach [116].

2.2 Data-Driven Simulation

During the development of an autonomous driving system, rigorous testing and
evaluation is critical to ensure safety and robustness. Nonetheless, real-world experi-
ments are expensive, not reproducible, and constitute severe safety concerns. Driving
simulators have been vital tools in research [123, 36, 18], enabling fast, cost-efficient,
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2.2. Data-Driven Simulation

and safe prototyping of novel methods with standardized benchmarks and metrics.
However, the simulated environments must be realistic to ensure that techniques and
insights transfer to the real world.

Another method is open-loop evaluation which avoids simulation altogether. Open-
loop benchmarks have been commonly used in literature for end-to-end models or
planning approaches on real-world data [57, 64]. The trajectories of the driving system
and human vehicle operator are then compared based on displacement metrics or
collision probabilities [17]. However, the driving system does not influence the vehicle
or environment during deployment. The open-loop evaluation has no aggregating
errors, and a driving system must not be able to recover from potential drifts.

However, there are critical challenges for simulators to ensure realism. Specific sub-
challenges include initializing traffic scenes, simulating traffic, or supplying realistic
sensor data. Several established driving simulators [123, 36] strongly rely on manually
engineered solutions for these tasks. Traffic scenes are initialized based on rules,
heuristics, and probabilistic distributions while requiring expertise and manual
labor [26]. Traffic simulations often rely on rule-based car-following models, such
as the Intelligent Driver Model (IDM) [110], resulting in the simplistic behavior
of traffic entities. Furthermore, sensor simulations commonly require 3D computer
graphic engines [41]. While these engines offer high flexibility for configuring sensor
suites, they need immense computing or supply inadequate realism.

Alternatively, data-driven simulation methods address the challenges by incorporating
real-world driving data [3, 18]. Simulators can scale in complexity with growing
datasets and allow evaluation with real traffic scenarios.

Scene Initialization. The easiest data-driven method for scene initialization is
to sample encountered traffic scenes from the data recordings [18, 75]. Map layouts
or traffic dynamics occur as naturally observed on real roads. The simulator can
mine specific situations or even optimize the initial parameters for safety-critical
scenarios [35, 49, 113]. Another method is to use generative machine learning models
to learn the underlying distribution of the real-world data [13, 39]. Such models
ideally create plausible traffic scenarios similar to the collected training data.

Traffic Simulation. The task of traffic simulation includes modeling the highly
complex and interactive multi-agent environment of real-world roads. For this task,
data-driven methods are promising as natural driving behaviors are hard to engineer
manually (e.g., lane changes or subtle negotiations). Several methods were proposed
for this task [13, 39, 134, 125].

Sensor Simulation. The sensor simulation task involves synthesizing new sensor
data, such as images or LiDAR point clouds, from the current viewpoint of the
vehicle [5, 127]. For data-driven methods, a learned model has to generate realistic
data and account for different movements of the ego vehicle. Therefore, techniques
from novel view synthesis, such as Neural Radiance Fields (NeRFs) [79], have been
utilized. Additionally, data-driven methods have been used in robotics to enhance
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the photo-realism of graphic-based simulators [51, 97]. This can avoid distribution
shifts when transferring an approach to the real world.

This thesis focuses on the nuPlan dataset for data-driven simulation [18]. Previous
planning benchmarks are not built upon large-scale real-world data or do not support
closed-loop simulation. The nuPlan simulator supports data-driven scene initialization
but only enables log-replay or rule-based (i.e., IDM) traffic simulation. Furthermore,
the nuPlan framework does not perform closed-loop sensor simulation (e.g., with
novel view synthesis) but provides raw sensor data for about 10% of the dataset.

2.3 Vehicle Motion Planning
This Section examines related work on vehicle motion planning. There are two
dominant paradigms for planning in autonomous driving, namely, rule-based and
learning-based planning systems.

2.3.1 Rule-based Planning
Rule-based planners employ specific rules to guide the behavior for motion planning
(e.g., waiting at a red traffic light). Thereby, rule-based systems can give guarantees
for regulations and traffic rules while being highly interpretable compared to learned
black-box models. The IDM [110] car-following method is relatively old but remains
a relevant technique for rule-based planning or traffic simulation [36, 18]. IDM offers
longitudinal control with a mathematical model to follow a leading vehicle at a safe
distance based on the current speed, desired speed, or distance to the car in front.
Extensions of IDM, e.g. MOBILE [66], enabling lane changes on highway settings.
Many planning methods operate in lane-based Frenet frames and employ quintic
polynomials for trajectory generation [117, 38].

Rule-based planners mainly rely on perception systems and detailed map information.
An alternative approach is offered by predicting affordance indicators that describe
the vehicle and environment state tailored for a rule-based decision module [22, 101].

The nuPlan framework integrates rule-based approaches, specifically IDM as baseline
planner and background traffic agent in the reactive environment. The method in
this thesis builds upon IDM with extensions of several rule-based components.

2.3.2 Learning-based Planning
An emerging field is learned planning, which employs machine learning (ML) models
that predict an output trajectory from data. In literature, ML planners strongly vary
in learning paradigms, input representations, and evaluation metrics. The following
elaborates on behavior cloning (BC) and inverse reinforcement learning (IRL) for
expert imitation, together with reinforcement learning (RL).
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2.3. Vehicle Motion Planning

Behavior Cloning (BC). In BC, a driving policy model is optimized to imitate
expert recordings with supervised learning. In 1988, the seminal work ALVINN
demonstrated BC with a neural network for road following [88]. More recently,
these methods have shown impressive capabilities with end-to-end learning from
various inputs, including camera images [126, 25, 84, 12, 29, 121], LiDAR data [96,
40], or combinations of sensor modalities [89, 24, 30]. In modular pipelines, BC
can be trained on intermediate representations, such as bird’s eye view (BEV)
raster [11], or vectorized scene representations [95, 48]. ChaffeurNet [11] encodes
rasterized images with convolutional neural networks (CNNs) and incorporates
auxiliary losses and perturbations during training to counteract distribution shifts
(or covariate shifts) in closed-loop testing. PlanT [95] demonstrates closed-loop
planning in CARLA [36], based on trajectory prediction on vectorized scene input
with a transformer architecture [112]. Approaches in BC are known to be affected
by covariate shifts and causal confusion, where false input-output correlations are
exploited during optimization.

Reinforcement Learning (RL). In RL, an agent learns in the environment from
a reward function that assigns a value to an action [26]. The reward function is
crucial for overall performance but challenging to design manually, specifically for the
autonomous driving task. Nevertheless, RL has been effectively applied for self-driving
in combination with supervised learning [109, 21], for policy fine-tuning [77, 84], or
with privileged input information [68, 132].

Inverse Reinforcement Learning (IRL). Another method for imitation learning
is IRL, where the goal is to infer the underlying cost or reward function that motivates
the expert’s behavior. Classical IRL approaches focus on learning a reward function
as a linear combination of handcrafted features [1, 136, 60]. IRL for driving requires
a parameterized set of trajectory proposals and learning a cost representation from
expert demonstrations with the maximum margin [129, 54, 99] or the maximum
entropy method [136, 122, 86]. The trajectory proposal with minimum cost is expected
to be similar to the expert’s behavior, thus achieving a high reward.

This work primarily focuses on BC in learned planning. Currently, nuPlan does
not support RL but offers an imitation learning framework with BC baselines for
rasterized and vectorized scene inputs.
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3 nuPlan

The nuPlan framework is fully open-source and combines a dataset, a simulator,
and an evaluation scheme for the data-driven development of autonomous vehicles.
In Section 3.1, I provide a general overview of the collection and annotation of the
dataset. Section 3.2 introduces the inaugural nuPlan Challenge 2023 and Section 3.3
explains the simulation pipeline of the framework. Moreover, Section 3.4 introduces
the evaluation metrics, and Section 3.5 serves as an overview of the baseline planners
in the nuPlan framework.

3.1 Dataset
The nuPlan dataset contains driving data of a human vehicle operator from Las
Vegas, Boston, Pittsburgh, and Singapore. The driving data is relatively diverse,
having both left- and right-hand traffic. The nuPlan framework provides an SQLite1

database that includes annotations, map information, and vehicle metadata. The
database allows extracting training data in various representations and mining short
real-world scenarios to simulate and evaluate a planner.

Data Collection. A human vehicle operator collects raw sensor data, providing
a ground-truth trajectory for learned planners with imitation learning. The vehicle
is equipped with five LiDAR sensors, eight cameras, an Inertial Measurement Unit
(IMU), and a Global Navigation Satellite System (GNSS) for localization [80]. The
sensor data primarily serves as input for the auto-labeling system. Only 10% of
the sensor data is currently available since the unreleased dataset has an immense
scale of over 200TB. The database contains about 1300h of driving data in the
autolabeled format, where most recordings originate from Las Vegas (838h). Heavy
rain conditions and night driving were not considered during data collection.

Data Annotation. The database contains the inferred annotations of an offline
perception system, which has two impactful benefits. First, the auto-generated
labels do not require extensive storage or costly manual annotation labor, enabling
large-scale dataset generation. Secondly, the offline annotation operates without
real-time constraints or limited on-car computational resources while considering the
whole temporal context. This allows for enhanced detection and globally consistent
tracking. The bounding boxes (BB) in nuPlan contain discrete labels for cars, bicycles,

1https://www.sqlite.org/
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LaneBaseline Path

(a) Lane Graph

Roadblocks

(b) Roadblock Graph

Figure 3.1: Graph structure of lanes and roadblocks. The figure shows (a) a highlighted
lane and baseline path and (b) the network structure of multiple roadblocks,
each in a distinct color.

pedestrians, traffic cones, barriers, construction zone signs, and other generic objects.
The offline perception system consists of multi-view fusion [92], PointPillars [71]
with CenterPoint [128], and non-causal tracking. Moreover, the perception system
detects and infers the traffic-light states for an entire intersection by considering the
movement of all actors in the scene.

Maps. The nuPlan framework provides high-definition (HD) maps in 2D BEV that
require human effort during annotation. The map includes polygons with semantic
classes for roads, intersections, crosswalks, etc. Fig. 3.1 shows the directed graph
structure of the map for lanes and roadblocks:

• Lane: Map object for a single lane. A lane compromises a polygon, the bound-
aries, and a baseline path in the lane center. Lanes have directed edges to
incoming and outgoing lane objects.

• Roadblock: Map object that contains a set of lanes with the same direction.
A roadblock contains a polygon, the set of lane objects, and has directed edges
to incoming and outgoing roadblocks.

The dataset provides the route of the expert driver as a sequence of roadblocks. Thus,
the route information is sparse and does not provide lanes or lane changes taken by
the human expert. The source code of nuPlan further categorizes lane and roadblock
objects into regular or connector nodes. However, I adopt the terminology from the
official documentation2 and refer to all lanes and roadblocks as regular nodes on the
graph structure.

Scenario. Simulation and evaluation in nuPlan is based on scenarios, which are short
clips extracted from the dataset with a predefined length (e.g., 15s). Each scenario
is categorized with a type descriptor of the current recordings. In total, nuPlan
distinguishes between 70 scenario types, e.g., lane change, protected or unprotected

2https://nuplan-devkit.readthedocs.io/
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3.2. Competition

Training Validation Test

# % # % # %

sg-one-north 6,663 7.55 660 8.67 626 7.67
us-ma-boston 4,888 5.54 484 6.36 357 4.37
us-nv-las-vegas-strip 66,402 75.25 5,650 74.22 6,275 76.85
us-pa-pittsburgh-hazelwood 10,287 11.66 819 10.76 907 11.11

Table 3.1: Scenario distributions across locations in nuPlan. The table shows the number
(#) and percentages (%) of temporally non-overlapping scenarios of the nuPlan
splits. Only scenarios with complete goal and route data are considered.

turn, or waiting for crossing pedestrians. The scenario types enable to query diverse,
complex, and type-specific scenario sets for the evaluation or training of a planner.

Dataset Splits. The nuPlan database offers separate splits for training, validation,
and testing. Notably, the validation and test split are similar in city distribution and
overall size, as shown in Table 3.1.

3.2 Competition
This Section provides an overview of the nuPlan Challenge 2023. The leaderboard
offers a standardized benchmark with fixed requirements for a planner.

Sub-Challenges. The nuPlan leaderboard evaluates a planner in three sub-
challenges: open-loop, closed-loop non-reactive, and closed-loop reactive. In the
open-loop challenge, the ego agent follows its recorded log. Thus the planner does
not control the vehicle. The open-loop metrics compare the planner output with the
expert based on displacements and heading errors. In both closed-loop challenges,
the ego-vehicle is simulated in map coordinates with a controller and a vehicle
motion model, as described in Section 3.3. The non-reactive challenge replays the
environment entirely from the recordings, whereas the reactive challenge simulates
non-ego vehicles with an IDM planner (described in Section 3.5.1). The closed-loop
metrics measure the planning performance based on established driving criteria. In
Section 3.4, I comprehensively describe the complete metric structure.

Planner. A planner receives (1) the current and past observation, (2) a sequence of
roadblocks as a route, and (3) a goal pose. The observations are available for a 2s
history and include the ego states, the detections of the offline perception system
with the semantic classes, and the traffic light states. Furthermore, the planner has
access to the map and the internal graph structures. The goal pose is typically not
reachable in a short simulated scenario. Thus, the roadblock sequence serves primarily
for navigation. A planner is required to output an 8s trajectory in the form of the
future rear-axle poses of the ego-vehicle. For each simulation iteration, the planner

21



Chapter 3. nuPlan

has a time budget of 1s on the evaluation server.

Leaderboard. The planning challenge only considers 14 out of 70 scenario types.
The scenarios are part of a hidden dataset that is not publicly available. The scenarios
are 15s long and simulated at 10Hz. Each scenario is scored between 0-1, where
the metrics depend on the sub-challenge. The sub-challenge score is the average of
all scenario scores, and the final score is the average of all sub-challenge scores. A
participating team has three submissions to the leaderboard.

3.3 Simulation
In this Section, I explain the closed-loop simulation pipeline of nuPlan. The nuPlan
framework sequentially applies a controller to the trajectory of a planner to determine
steering and acceleration values, which are fed into a motion model to propagate the
ego-vehicle in map coordinate space.

3.3.1 Linear Quadratic Regulator
The nuPlan Challenge applies a Linear Quadratic Regular (LQR) controller to the
planner trajectory [72, 106]. This controller originates from optimal control theory
to regulate a system by minimizing a cost function. The LQR controller assumes
linearity of the system dynamics, i.e., for a time-continuous system given by

ẋ = Ax +Bu, (3.1)

where x is a state vector, u is the control value, A is the state transition matrix,
and B is the control input matrix. Furthermore, the controller has a quadratic cost
function J , i.e., given by

J =
∫ ∞

0
(xTQ+uTRu) dt (3.2)

where Q is a diagonal weighting matrix for the states, and R is a diagonal weighting
matrix for the control inputs. The matrices Q and R have manually selected weights
to tune the importance of the cost function J for specific states and the desired
control inputs, respectively. The optimal solution for this control problem is u = −Kx,
where K is called the gain matrix and can be found by solving a Riccati equation [72].

The nuPlan framework applies two LQR controllers for longitudinal and lateral
control based on the reference time-point of the planner trajectory at a horizon of 1s.
The longitudinal controller aims to minimize the velocity error by calculating the
optimal acceleration. The lateral controller seeks to reduce the lateral displacement
and heading error by adapting the steering rate. When the current velocity is below a
threshold, the implementation applies a simple proportional controller for deceleration
combined with a steering rate of zero.
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L

Figure 3.2: Kinematic Bicycle Model. Two axles approximate the motion of a vehicle.
Illustrated are the heading angle θ, the wheelbase L, and the steering angle δ.

The framework additionally offers an implementation for the iterative LQR con-
troller [76], which handles non-linearity by repetitive minimization of the quadratic
cost function. However, the nuPlan Challenge 2023 employs the LQR controller with
a set of fixed parameters (e.g., Q and R) that cannot be tailored to a planner.

3.3.2 Kinematic Bicycle Model

The kinematic bicycle model is a common method to approximate a car’s motion on
a 2D coordinate surface [94, 87]. The bicycle model has two wheels that resemble
the front and rear axle of the vehicle, as shown in Fig. 3.2. Similar to bicycles and
most cars, only the front axle can be used for steering. The model is parameterized
at time t by the current rear axle pose (xt,yt,θt), the longitudinal velocity vt, the
steering angle δt of the front wheel, and the constant wheelbase of the vehicle L. The
simulation pipeline propagates the bicycle model with the following equations for
the duration of ∆t

xt+1 = xt +vt cos(θt)∆t (3.3)
yt+1 = yt +vt sin(θt)∆t (3.4)

θt+1 = θt + v tan(δt)
L

∆t. (3.5)

Importantly, the nuPlan implementation considers a kinematic bicycle model with
a side slip angle β and slip angles α of zero. Before each propagating step, nuPlan
updates the velocity vt and steering angle ψt based on the controller values with
low-pass filtering. The filter reduces high-frequencies in the acceleration and steering
rate of the controller. This ensures a smoother simulation but causes a slower response
to control inputs.

23



Chapter 3. nuPlan

Metric Weight Range

Miss Rate (MR) multiplier {0,1}

Average Displacement Error (ADE) 1 [0,1]
Average Heading Error (AHE) 2 [0,1]
Final Displacement Error (FDE) 1 [0,1]
Final Heading Error (FHE) 2 [0,1]

Table 3.2: Open-loop Metrics. Summary of metric names, weights, and output values.

3.4 Metrics
Quantifying the broad spectrum of requirements for an autonomous vehicle is a
complex task. Some objectives are optional but preferred (e.g., comfort), while other
behaviors are indispensable (e.g., collision avoidance).

The nuPlan Challenge has two metric structures for open-loop and closed-loop that
follow a similar principle. Both metrics structures assign a score to a scenario by
combining a set of multiplier metrics M and weighted average metrics W .

scenario_score =
( ∏

m∈M

scorem

)
×
(∑

w∈W weightw ×scorew∑
w∈W weightw

)
(3.6)

Since all multiplier and weighted scores are in the interval [0,1], the scenario score
lies in the same range. Higher scores are better. Thus the multiplier metrics generally
carry greater importance. In the following, I will describe the metrics of each sub-task
in more detail.

3.4.1 Open-loop

The planner does not influence the motion of the car during open-loop simulation.
Therefore, the open-loop metrics only compare the planner output to the trajectory
of the human expert driver. The open-loop score consists of four weighted average
metrics and one multiplier metric, which I summarize in Table 3.2.

All open-loop metrics operate on the simulation iterations I with a frequency of 1Hz.
At each simulation iteration, the framework down-samples the planned trajectories
to 1Hz with the future horizon steps Ht = {1, . . . ,8}. All metrics compare the planner
and expert over the comparison horizon steps Hc = {3,5,8}. Note that the indices of
Ht and Hc also symbolize the future seconds of the trajectories. For each iteration
i ∈ I, I denote the expert trajectory τi and the planner trajectory τ̂i as {(xi

t,θ
i
t)}t∈Ht

and {(x̂i
t, θ̂

i
t)}t∈Ht , respectively.

Miss Rate (MR) within bound. The MR is the only multiplier metric in open-loop.
The metric considers a trajectory τ̂i at iteration i ∈ I to be a miss if the displacement
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exceeds threshold tresh(c) at the corresponding comparison horizon c ∈ Hc. The
miss rate is given by

MR = 1
|I|
∑
i∈I

[∃c ∈Hc : thresh(c)< ∥xi
c − x̂i

c∥2], (3.7)

where tresh(3) = 6m, tresh(5) = 8m, and tresh(8) = 16m. The final score is 0 or 1,
depending on whether the MR exceeds 30%.

scoreMR = [MR ≤ 0.3] ∈ {0,1}. (3.8)

Average Displacement Error (ADE) within bound. The ADE metric calculates
the L2 distances as the average of all scenario iterations, comparison horizons, and
samples within a comparison horizon.

ADE = 1
|I|
∑
i∈I

 1
|Hc|

∑
c∈Hc

(
1
c

c∑
t=1

∥xi
t − x̂i

t∥2

) . (3.9)

Average Heading Error (AHE) within bound. Similarly, the AHE metric
calculates the L1 distance between the heading angles as an average of all scenario
iterations, comparison horizons, and samples within a comparison horizon.

AHE = 1
|I|
∑
i∈I

 1
|Hc|

∑
c∈Hc

(
1
c

c∑
t=1

∥θi
t − θ̂i

t∥1

) . (3.10)

Final Displacement Error (FDE) within bound. The FDE metric calculates the
L2 distances for all c ∈Hc, and averages over the scenario iterations and comparison
horizons.

FDE = 1
|I|
∑
i∈I

 1
|Hc|

∑
c∈Hc

∥xi
c − x̂i

c∥2

 . (3.11)

Final Heading Error (FHE) within bound. Likewise, the FHE metric calculates
the L1 distance between the heading angles for all c ∈ Hc, and averages over the
scenario iterations and comparison horizons.

FHE = 1
|I|
∑
i∈I

 1
|Hc|

∑
c∈Hc

∥θi
c − θ̂i

c∥1

 . (3.12)

Lastly, the scores of a weighted metric w ∈ {ADE,AHE,FDE,FHE} is normalized to the
range [0,1], with the following equation

scorew = max
(

0,1− w

maxw

)
∈ [0,1]. (3.13)

for the distance parameters maxADE and maxFDE of 8 meters, and heading parameters
maxAHE and maxFHE of 0.8 radian.
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Metric Weight Range

No at-fault Collisions (NC) multiplier {0, 1
2 ,1}

Drivable Area Compliance (DAC) multiplier {0,1}
Driving Direction Compliance (DDC) multiplier {0, 1

2 ,1}
Making Progress (MP) multiplier {0,1}

Time to Collision (TTC) 5 {0,1}
Ego Progress (EP) 5 [0,1]
Speed-limit Compliance (SC) 4 [0,1]
Comfort (C) 2 {0,1}

Table 3.3: Closed-loop Metrics. Summary of metric names, weights, and output values.

3.4.2 Closed-loop

The nuPlan framework creates a closed-loop score for a simulated scenario by
combining four multiplier and four weighted average metrics, as shown in Table 3.3.

No at-fault Collisions (NC). A collision occurs when the bounding boxes of
a detection track and the ego vehicle intersect. The metric only penalizes at-fault
collisions because the detection tracks are primarily non-reactive. At-fault cases
are (1) collision with a stationary detection track, (2) ego-front collision with a
non-stationary detection track, and (3) ego-side collision when the ego-vehicle is in an
intersection or multiple lanes. Conversely, collisions are not at-fault if the ego-vehicle
is stationary or in a single lane during a side collision. Given a first bounding box
intersection, the metric classifies the collision and ignores the detection track for
future frames. Furthermore, the metric distinguishes between at-fault collisions with
dynamic detection tracks (vehicles, pedestrians, and bicycles) and static detection
tracks (e.g., traffic cone, generic object). The score is given by

scoreNC =


1, no at-fault collision
0.5, one at-fault collision with static track
0, otherwise

. (3.14)

Drivable Area Compliance (DAC). The metric is either scoreDAC = 0, if the
ego-vehicle leaves the drivable area, or scoreDAC = 1 otherwise. The drivable areas
are lanes, intersections, or parking lots. Small violations of up to 0.3m are allowed
due to the over-approximation of the ego’s bounding box.

Driving Direction Compliance (DDC). The planner is penalized when driving
into oncoming traffic. The metrics accumulate the distance dDDC where the ego
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vehicle’s center moves in the opposite direction of a lane. The score is given by

scoreNC =


1, if dDDC ≤ 2m
0.5, if 2m< dDDC ≤ 6m
0, otherwise

(3.15)

Making Progress (MP). This metric is based on the ego progress result scoreEP
and calculated by

scoreMP = [scoreEP > 0.2] ∈ {0,1}. (3.16)

Therefore, the planner is penalized if it has less than 20% of the expert’s progress,
e.g., when the planner gets stuck in traffic.

Time to Collision (TTC) within bound. The metric projects the ego vehicle
and detection tracks at a constant velocity and heading angle with a step size of
0.1s. TTC is the minimum time in any iteration until the ego vehicle collides with
a detection track. The metric considers front collisions or collisions when the ego
vehicle is in multiple lanes or intersections. Moreover, the metric ignores detection
tracks behind the ego vehicle entirely. The result is either scoreTTC = 1, if TTC> 0.95s,
or scoreTTC = 0 otherwise.

Ego Progress (EP). This metric first extracts the human expert route as a
sequence of roadblocks. The expert progress dexpert is the distance along the baseline
paths of the expert lane sequence. The ego progress dego is the distance along the
baseline paths of the ego lanes if the lanes are in the expert roadblock sequence. The
score is given by

scoreEP = min
(

1,
max(dego,0.1m)

max(dexpert,0.1m)

)
(3.17)

where the planner is not penalized when the expert is stationary (i.e., dexpert < 0.1).
Furthermore, if dego <−0.1m, the metric overwrites scoreEP = 0, in order to penalize
the planner for negative progress.

Speed-limit Compliance (SC). The metric extracts the ego-speed vi
ego and speed-

limit of the current lane vi
lane, for all scenario iterations i ∈ I. The score calculates

the average speed-limit violation and normalizes the result with the equations

avg_violation = ∆t
T

∑
i∈I

max(0,vi
ego −vi

lane) (3.18)

scoreSC = max
(

0,1− avg_violation·
max_violation

)
. (3.19)

where ∆t = 0.1s is the iteration interval, and T = 15s the scenario duration. The
violation score is normalized with max_violation = 2.23 m/s (roughly 5 miles per
hour).
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(a) Lane Graph. (b) Shortest Path. (c) Centerline.

Figure 3.3: Centerline Extraction. (a) Given the current lane graph, (b) the IDM planner
determines the shortest path of lane nodes. (c) The baseline paths of the lane
nodes form the centerline.

Comfort (C). This metric verifies that kinematic statistics are within comfort-
able ranges, which were determined by the challenge organizers based on the ex-
pert recordings. Specifically, the metric checks if the longitudinal acceleration is in
[−4.05,2.40] m/s2, the absolute lateral acceleration is below 4.89 m/s2, the absolute
yaw acceleration is below 1.93 rad/s2, the absolute yaw velocity is below 0.95 rad/s,
the absolute longitudinal jerk is below 4.13 m/s3, and the jerk magnitude is be-
low 8.37 m/s3. If the planner complies with all the above conditions, the result is
scoreC = 1, otherwise scoreC = 0.

3.5 Baselines

The nuPlan framework implements rule- and learning-based baselines. This section
describes the baseline planners I use for the experiments.

3.5.1 Intelligent Driver Model

The Intelligent Driver Model (IDM) is a common rule-based longitudinal control
model designed to follow a leading vehicle while maintaining a safe distance [110]. In
nuPlan, the IDM planner is a baseline planner and controls the vehicles in the reactive
closed-loop challenge. The planner first extracts a lateral path from the provided
lane graph and then applies the IDM policy for longitudinal control.

Lateral. The planner applies a Breadth-First-Search (BFS) algorithm on the lane
graph, as shown in Fig. 3.3. BFS finds the shortest sequence of lanes along the route
from the current lane to any lane in the last on-route roadblock. If BFS can not
determine a path, the planner considers the furthest lane sequence along the route.
The planner connects the baseline paths from the BFS lane sequence to a single line,
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3.5. Baselines

Parameter Value Description

v0 vlane
Desired velocity. Either the current speed-limit,
or vlane = 10 ms−1 if speed-limit not available.

s0 1.0 m Desired net distance to the leading agent α−1.
T 1.5 s Desired time headway to leading agent α−1.
a 1.0 ms−2 Maximum acceleration of ego vehicle α
b 3.0 ms−2 Maximum deceleration (positive) of ego vehicle α
δ 4.0 Acceleration exponent.

Table 3.4: Baseline parameters of the IDM planner.

which I call the centerline. The centerline is a condensed representation of the route
with the underlying prior of staying in the center of the road.

Longitudinal. IDM iteratively applies a policy to calculate the longitudinal velocity
ẋα and acceleration v̇α for the ego vehicle α. By integrating the velocities over time,
the planner retrieves the longitudinal ego position xα, which is interpolated along
the centerline to calculate the trajectory samples. Since IDM is a parameterized
car-following model, each unrolling step requires extracting the states of the leading
agent α−1, resulting in the net distance sα and approaching rate ∆vα:

sα := xα−1 −xα − lα−1, (3.20)
∆vα := vα −vα−1, (3.21)

where lα−1 is the length of the leading vehicle. Finally, the IDM output givenby the
following equations:

ẋα = dxα

dt = vα (3.22)

v̇α = dvα

dt = a

(
1−

(
vα

v0

)δ

−
(
s∗(vα,∆vα)

sα

)2)
(3.23)

with s∗(vα,∆vα) = s0 +vαT + vα∆vα

2
√
ab

(3.24)

where parameters in red are manually selected and summarized in Table 3.4. Inter-
sections on the route with red traffic lights are considered to be stationary obstacles
to obey traffic rules.

3.5.2 PlanCNN
The PlanCNN model is a learning-based baseline planner provided in nuPlan [95].
The planner converts the input from the map and offline perception system into a
rasterized BEV image presentation. Specifically, the raster input has four channels
that encode (1) the non-ego agents and objects, (2) the ego vehicle, (3) the baseline
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CNN FC

Figure 3.4: PlanCNN. The input image for the CNN includes non-ego objects (blue), the ego
vehicle (red), the baseline paths (dark-gray), and the map objects (light-gray).
A fully connected layer decodes the trajectory waypoints.

paths of nearby lanes, and (4) the polygons of lanes, intersections, crosswalks, and
stop lines in varying intensities. An example of the input and architecture of PlanCNN
is shown in Fig. 3.4.

Given the image representation, the framework allows encoding the input with various
CNNs from the timm library [118]. The planner replaces the classification layer with
a linear layer for regression of the trajectory poses. The network is trained to imitate
the expert trajectory and is similar in design to ChaffeurNet [11].

3.5.3 Urban Driver Model

The nuPlan devkit provides an implementation of the Urban Driver model [102].
The Urban Driver model was created for closed-loop training with policy gradient
optimization [50]. However, this requires iterative unrolling and evaluation of the
planner during training and a differentiable simulator. Instead, the nuPlan framework
offers open-loop training with imitation learning for Urban Driver.

The input of Urban Driver consists of the ego vehicle, nearby agents, and map
elements, as shown in Fig. 3.5. The ego vehicle and agent features encode the current
and past poses (with a history of 1.5s). Lanes are represented by the polygons
from the lane boundaries and the baseline paths. Additional map elements are also
provided as polygons, such as stop lines and crosswalks. The model projects all
points of the input entities to a higher dimension, adds a positional embedding (PE),
and applies several PointNet layers [91]. As a result, each entity is represented by a
128-dimensional feature descriptor. The vectors of the feature descriptors are further
projected and globally aggregated with multihead-attention (MHA) [112]. A final
multilayer perceptron (MLP) decodes the waypoints of the output trajectory.
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Figure 3.5: Urban Driver. The model encodes polygons, agents, and ego states of the
scene with several PointNet layers. A multihead-attention layer aggregates
the entities, and an MLP decodes the trajectory waypoints. (Figure inspired
by [102])

3.5.4 Log-Replay Planner
The log-replay planner of nuPlan allows one to compare a planner to the human vehicle
operator. Contrary to all presented planners in this thesis, the log-replay planner
receives privileged future information about the scenario. Given this information, the
log-replay planner outputs the ground-truth trajectory of the human expert at every
iteration. Thereby, the planner perfectly imitates the expert in open-loop. However,
the planner does not account for controller errors in closed-loop and does not consider
the reactive vehicles in the third sub-challenge.
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4 Methods

In this chapter, I present the components and fundamental concepts of the proposed
planners. As part of this thesis, I participated with my fellow team members in the
2023 nuPlan Challenge. The challenge requires robust planning during closed-loop
simulation and the ability to imitate the human driver in open-loop evaluation.

Rule-Based ML-Based Output

Figure 4.1: The PDM-Hybrid planner fuses a short-term trajectory (green) from the rule-
based PDM-Closed component, and a long-term trajectory (violet) from the
learned PDM-Open module.

Given these requirements, we propose the Predictive Driver Model (PDM), a modular
approach that performs planning and long-term correction separately, as shown in
Fig. 4.1. Specifically, we combine rule-based planning (PDM-Closed) in Section 4.1,
and learning-based ego-forecasting (PDM-Open) in Section 4.2. Finally, I describe our
hybrid planner (PDM-Hybrid) in Section 4.3, which our team designed for the nuPlan
Challenge.

4.1 Rule-Based Planning
Model Predictive Control (MPC) is a technique that utilizes an internal model to
predict control outcomes over a finite horizon. Thereby, MPC can optimize control
values for a task-dependent objective while anticipating the future environment.

Our rule-based planner extends the IDM baseline with concepts from MPC. Specifically,
the planner employs a discrete set of trajectories that are simulated and scored in
the forecasted environment. We refer to the planner as PDM-Closed since the method
contributes to closed-loop performance in our hybrid planner. PDM-Closed determines
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Select Centerline IDM Proposals Select Trajectory

ScoringSimulation

Agent Forecast

Figure 4.2: PDM-Closed. The rule-based planner extracts a centerline, projects the agents
in the scene, and generates a set of IDM proposals. After each proposal is
simulated and scored, the planner selects the output trajectory proposal.

an output trajectory with several components, shown in Fig. 4.2, which I describe in
the following.

Centerline. PDM-Closed applies a Dijkstra algorithm for centerline extraction,
where the length of a connected lane acts as edge-weight. Note that BFS (used by
IDM) corresponds to Dijkstra’s shortest path when all edge weights are equal. I found
Dijkstra’s algorithm more robust due to avoiding detours with little effect on runtime.

Observation & Forecasting. The offline perception system in nuPlan provides
vectors for the orientation and velocity of each semantic bounding box in the scene.
PDM-Closed extrapolates all objects with constant speed and heading angle to create
occupancy maps over the planning horizon H of 8s at 10Hz. Furthermore, we update
the dynamic objects at 5Hz and only consider the nearest 50 vehicles, 25 pedestrians,
10 bicycles, and 50 static objects to the ego agent. Thereby, the planner avoids
intensive computation costs when being nearby a large number of entities (e.g., a
crowd of pedestrians). Like the IDM baseline, we add red traffic lights along the route
as stationary objects to the occupancy maps.

Proposals. An IDM policy approaches a single target speed hyperparameter (v0
in (3.23)) in free traffic, leading to insufficient variety in longitudinal control. There-
fore, PDM-Closed employs five IDM policies with distinct target speeds, namely,
{20%, 40%, 60%, 80%, 100%} of the current speed-limit (or 15 m/s if the speed-
limit is not available). All IDM policies have increased acceleration parameters of
a= 1.5 m/s2 and δ = 10 for the exponent. The remaining parameters are identical
to the baseline IDM values in Table 3.4. Furthermore, following a single centerline
leads to insufficient lateral variety. Thus, we apply each policy on three lateral
centerline offsets (±1m and 0m), leading to N = 15 proposals in total. Each proposal
is generated for a prediction horizon P of 4s at 10Hz, where the leading agents are
updated at 5Hz. The shorter prediction horizon and lower update frequency of the
leading agent reduce computation costs across the planning stages.

Simulation. The PDM-Closed planner simulates all proposal trajectories over the
prediction horizon P of 4s at 10Hz with a re-implementation of nuPlan’s two-stage
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pipeline (see Section 3.3). Importantly, the revised LQR controller and bicycle
model produce the same output while allowing faster batch-wise simulation of the
proposals. As a result, the proposals are converted into the expected movement
during closed-loop evaluation.

Scoring. The scoring function evaluates the simulated proposals in the forecasted
environment with the closed-loop metrics of nuPlan (see Section 3.4.2). We re-
implement the metrics for faster batch-wise computation to meet the strict runtime
requirements of the competition. The scoring considers at-fault collisions, drivable
area infractions, and driving direction compliance as multiplier metrics. With nuPlan’s
weight parameters, we average the scores for ego progress, time-to-collision, and
comfort. The ego progress is measured along the centerline and normalized as a ratio
to the most progressing proposal without multiplier infractions. Our scoring function
ignores speed-limit compliance and the binary “making progress” metric. The IDM
proposals naturally comply with the speed-limit and the “making progress” metric
cannot be evaluated without privileged knowledge of the human expert’s behavior.

Trajectory Selection. Finally, PDM-Closed outputs the highest-scoring proposal,
which is extended to the entire planning horizon H of 8s with the corresponding
IDM policy. If the best trajectory has an expected at-fault collision within 2s, the
output is overwritten with a maximum braking force maneuver. This emergency
brake ensures a stationary ego-vehicle, e.g., during impact with a non-reactive agent.

The implementation of PDM-Closed is based on the IDM planner (see Section 3.5.1).
My primary role for the challenge was the development of PDM-Closed, where I wrote
the complete code and rigorously optimized the runtime. I acknowledge the crucial
input of my peers, such as employing and simulating multiple trajectory proposals.

4.2 Learning-Based Ego-Forecasting

This section presents a family of machine-learning models used interchangeably in
our hybrid planner for open-loop performance. In this thesis, I refer to these models
as PDM-Open. All models are trained with imitation learning. First, I introduce a
multi-modal prediction model our team adapted for uni-modal ego-forecasting in
the nuPlan Challenge. Secondly, I present a more straightforward approach that
performs ego-forecasting based on a single multilayer perceptron (MLP).

4.2.1 Goal-Conditioned Prediction via Graph-based Policy

For the nuPlan Challenge 2023, our team applied Goal-conditioned Ego-Forecasting
via Graph-based Policy (GC-PGP [48]) as a module for PDM-Open. GC-PGP extends a
state-of-the-art prediction model, called PGP [34], that outputs a set of k possible
trajectories as ego-forecasts.
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Figure 4.3: GC-PGP. The model encodes lane nodes, agents, and ego histories. After applying
attention and graph neural network (GNN) layers, the model predicts transition
probabilities used to sample lane-traversals. A latent variable model decodes
trajectory proposals, which are clustered into k ego-forecasts. Finally, GC-PGP
outputs the cluster centers with the highest rank.

PGP. The model receives an ego-centered lane-graph representation, the ego vehicle
state, and observed states of surrounding agents. In contrast to nuPlan’s lane graph,
PGP adds directed edges for nearby lanes and the traffic flow direction. Furthermore,
each lane node is restricted to 20m length and input to the network as a polyline
(with poses on the baseline path at 1m distance). PGP applies three gated recurrent
units (GRUs) that encode the past states (1s) of the ego vehicle and agents and
the samples of each lane node. The model aggregates the information by applying
agent-to-node attention and graph convolutional layers, yielding a per-node feature
representation. Based on the node features, an MLP predicts transition probabilities
for the outgoing edges of each lane. Given the probabilities, the model samples
N = 1000 graph traversals. For each traversal, PGP aggregates the ego-encoding and
the corresponding node features with multihead-attention (MHA). An MLP decodes
the proposal trajectories based on the MHA output and a random vector z for
longitudinal variety. Finally, PGP applies k-means clustering on the proposals and
outputs the k = 10 cluster centers as the prediction.

GC-PGP. The GC-PGP model is only trained for ego-forecasting and primarily differs
during inference, where the sampled graph traversals are constraint to follow the
route provided by nuPlan. Additionally, GC-PGP selects the proposal cluster with
the highest rank as a uni-modal trajectory output. This GC-PGP variant is used in
Chapter 5 as an additional baseline planner. As a module for our hybrid planner, we
use GC-PGP, but we average the trajectory proposal for the final output instead of
using clustering.

For the challenge, a team member and first author of GC-PGP provided the imple-
mentation. Thus, I was not involved in the development. However, I optimized the
runtime of GC-PGP for the submissions and proposed to average the proposals instead
of applying a clustering algorithm.
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Figure 4.4: MLP-Open. The model linearly projects the centerline and physical ego-vehicle
states, concatenates the outcome, and applies ϕOpen with two hidden layers to
decode the trajectory.

4.2.2 Centerline-Conditioned Multilayer Perceptron

A recent study showed that a naive MLP achieves competitive open-loop performance
on the nuScenes dataset [131] while only taking a direction command and the physical
state history of the ego vehicle as input. Inspired by this approach, we propose two
ego-forecasting methods, called MLP-Open and MLP-Offset. Both models consider the
ego-state history (h) and a centerline (c) as input, where MLP-Offset additionally
applies a corrective strategy given the trajectory (wclosed) of our rule-based planner
from Section 4.2.

MLP-Open. The ego-state history covers the past 2s at 5Hz and consists of the
position, velocity, and acceleration on the longitudinal, lateral, and angular axis of
the vehicle. Furthermore, the model extracts a centerline (identically to PDM-Closed)
and samples poses over a length of 120m at an interval of 1m. The ego-state history and
centerline representation are first scaled to a 512-dimensional vector with a linear layer,
concatenated, and input to the MLP ϕOpen. The architecture of ϕOpen incorporates
two 512-dimensional linear layers, dropout (p= 0.1), and ReLU activation functions.
A linear output layer regresses the future waypoints, denoted as wOpen = ϕOpen(h,c),
for the future 8s at 2Hz.

MLP-Offset. Besides the centerline and ego-state history, the MLP wOffset also
receives a linear projection of the waypoints wClosed from PDM-Closed (downsampled
to 2Hz). The overall model applies the same architecture to ϕOpen, but outputs the
waypoints

wOffset = wClosed +ϕOffset(h,c,wClosed), (4.1)

where ϕOffset predicts correctional offsets for the trajectory of PDM-closed.

For this thesis, I implemented the MLP-based forecasting models in nuPlan and
proposed to add the centerline as input. I acknowledge the valuable input of my team
members.
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Figure 4.5: PDM-Hybrid. First, the rule-based PDM-Closed module computes a centerline

and trajectory (green), which are given to MLP-Offset (together with the ego-
vehicle states) to predict correctional offsets (violet) for ego-forecasting. The
hybrid planner applies the correction only on long-term waypoints to limit the
influence of ego-forecasting during closed-loop simulation.

4.3 Hybrid Planning
Given that PDM-Open and PDM-Closed are separately designed for open-loop and
closed-loop performance, our hybrid planner has to combine the strengths of both
modules in a single trajectory output. In the following, I describe two options for
the hybrid planner to integrate rule-based planning and expert imitation with our
modules.

Trajectory Fusion. In practice, the LQR controller used in nuPlan relies exclusively
on the first 2 seconds of the trajectory when determining actions in closed-loop
simulation. Thus, the planner can consider the PDM-Closed trajectory and apply
PDM-Open beyond a correction horizon C (i.e., 2 seconds). The PDM-Hybrid output
waypoints (up to the planning horizon H) {wt

Hybrid}H
t=0 are given by:

wt
Hybrid =

{
wt

Open if t > C,

wt
Closed otherwise.

(4.2)

where wt
Open and wt

Closed are the waypoints at time-step t for PDM-Open and PDM-Closed,
respectively.

Evaluation Detection. Another (arguably less elegant) method is to output the
PDM-Open or PDM-Closed trajectory exclusively, depending on the evaluation mode.
This technique serves the competition and has no application in the real world. In
the competition, a planner is not directly informed whether it is in an open-loop or
closed-loop evaluation. However, PDM-Hybrid can detect the mode by simulating an
output trajectory of a previous iteration for one step. If there is a notable displacement
between the simulated and observed position, the planner assumes to be in open-
loop evaluation. This method has two benefits. First, PDM-Hybrid does not have to
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run both modules at each iteration, which saves runtime. Secondly, the PDM-Open
module is not solely applied beyond a correction horizon, which maintains open-loop
performance.

Our final planner PDM-Hybrid applies MLP-Offset as an ego-forecasting module and
uses trajectory fusion to combine the modules, as shown in Fig. 4.5. For the nuPlan
Challenge, we used a preliminary planner PDM-Hybrid* that employs evaluation
detection and integrates our modified GC-PGP version for ego-forecasting. However,
the evaluation detection is only accessible from the second iteration onwards and
requires a significant displacement. Because of that, PDM-Hybrid* applies trajectory
fusion if a closed-loop evaluation mode cannot be safely ruled out (which includes
during the first iteration).

For the competition, I wrote the code structure of the hybrid planner and managed the
submissions on the evaluation server. The core concept of combining two trajectories
originated from a team member.
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5 Experiments

In this Chapter, I conduct several experiments with our proposed methods. In
Section 5.1, I describe the benchmark and training scheme for the models and baselines.
In Section 5.2, I present the results on the benchmark and challenge leaderboard
while briefly describing our competitors. Furthermore, I conduct additional ablations
studies and experiments in Section 5.3.

5.1 Benchmark
The challenge leaderboard evaluated the planners on hidden data split and was
closed after the competition deadline. Therefore, our team proposes an evaluation
benchmark with a fixed training set for fair comparisons.

5.1.1 Evaluation

Similar to the leaderboard, I evaluate the planners for the three sub-challenges. In
the following, I describe the validation split, the metrics, and the hardware used for
all experiments.

Val14. The evaluation queries 100 scenarios of the 14 challenge scenario types the
leaderboard considers. This results in 1,118 scenarios (since not all types have 100
available scenarios). The scenarios are extracted from nuPlan’s internal validation
split. A threshold of 15s between the initial frames ensures that the scenarios have
no temporal overlap.

Metrics. For the planners, I report the score for the three sub-challenges: open-loop
score (OLS), closed-loop score non-reactive (CLS-NR), and closed-loop score reactive
(CLS-R). The metrics are calculated as described in Section 3.4 but scaled to 0-100
for readability.

Hardware. For simulation, training, and runtime analysis, I use an AMD Ryzen
7950X CPU, 64GB memory, and a single NVIDIA RTX 3090 GPU.

5.1.2 Training

All the models in this study are trained with a maximum of 4,000 samples of all 70
scenario types from nuPlan’s internal training database. Overall, the dataset consists
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Method Rep. OLS ↑ CLS-NR ↑ CLS-R ↑ Time ↓

Urban Driver [102] Polygon 82 53 50 64
GC-PGP [48] Graph 82 57 54 100
PlanCNN [95] Raster 64 73 72 43
IDM [110] Centerline 38 76 77 27

MLP-Open Centerline 86 50 54 7
MLP-Offset Centerline 87 61 58 96
PDM-Closed Centerline 42 93 92 91

PDM-Hybrid Centerline 84 93 92 96
PDM-Hybrid* Graph 84 93 92 172

Log Replay GT 100 94 80 -

Table 5.1: Val14 Benchmark. The table compares the open-loop score (OLS), closed-loop
score non-reactive/reactive (CLS-NR/CLS-R) and runtime in ms for the planners.
Moreover, the table specifies the input representation (Rep.) of each method.

of 177,435 frames. All models output a single 8s trajectory with a waypoint rate of
2Hz and are trained with the Adam optimizer [67].

The GC-PGP model is trained according to the original implementation [48]. The first
20 epochs are trained with teacher forcing, where only the ground-truth lane traversal
is used for proposal decoding. The lane traversals are randomly sampled from there
onward, and training continues for 50 epochs. The trajectory decoder is trained with
minADE loss, whereas the policy header (for traversal sampling) is trained with a
negative log-likelihood loss. GC-PGP uses a batch size of 32 and a learning rate of
1e−4 that is decayed after 40, 50, and 55 epochs by a factor of 0.5.

The models PlanCNN, Urban Driver, MLP-Open, and MLP-Offset, are all trained for
100 epochs with a batch size of 64, an L1-loss, and a learning rate of 1e−4 that is
decayed after 50 and 75 epochs by a factor of 0.1.

5.2 Results
In this Section, I provide the planning performance on the Val14 benchmark. Fur-
thermore, I present the leaderboard of the nuPlan Challenge 2023, with a description
of the competitors.

5.2.1 Benchmark Performance
The results of the Val14 benchmark are summarized in Table 5.1. The IDM planner
achieves the strongest CLS performance of all learned baseline approaches, with the
lowest overall OLS. The results indicate a clear trade-off between both evaluation

42



5.2. Results

Scenario Type # OLS ↑ CLS-NR ↑ CLS-R ↑

behind_long_vehicle 14 95 100 100
changing_lane 70 76 93 95
following_lane_with_lead 15 70 95 94
high_lateral_acceleration 96 78 87 88
high_magnitude_speed 99 86 98 96
low_magnitude_speed 100 84 92 90
near_multiple_vehicles 85 88 95 89
starting_left_turn 100 77 88 89
starting_right_turn 98 79 87 88
starting_straight_traffic_light 98 85 94 93
stationary_in_traffic 98 93 97 95
stopping_with_lead 93 95 99 99
traversing_pickup_dropoff 99 80 90 90
waiting_for_pedestrian_to_cross 53 86 89 89

Table 5.2: PDM-Hybrid. Results of PDM-Hybrid on the 14 scenario types of the Val14
benchmark and across the three sub-challenges. The tables further specifies the
number of scenarios (#) per type.

schemes. Learned planners showcase ego-forecasting performance (OLS), whereas
rule-based planners exhibit superior planning abilities (CLS). The PlanCNN model has
the highest CLS results of all learned planners, perhaps because the model discards
the ego vehicle state as input. Thereby, PlanCNN trades OLS for CLS performance
while offering lower runtime. The results contradict the recent trend towards graph-
and vector-based representations for planning and prediction [34, 95, 82, 32], showing
no advantage in runtime or closed-loop planning performance.

Moreover, the simplest learned model, MLP-Open, outperforms all baselines in open-
loop while only considering a route centerline as scene context. Interestingly, the
GC-PGP and Urban Driver models receive similar inputs of the route, baseline paths,
and the ego-vehicle state. In comparison, the primary strength of MLP-Open lies in
accurate ego-forecasting for lane-following over a long horizon. I expect that the
centerline input simplifies this task, leading to superior OLS, specifically in scenarios
that involve curves. I elaborate on this point in Section 5.3.3.

The closed-loop performance of MLP-Open is similarly low to baseline models that
achieve a high OLS. This indicates a shortcut in ego-forecasting of extrapolating
the physical vehicle state, while the map information or other agents have less
importance.

The PDM-Closed planner substantially improves upon IDM in CLS, with little growth
in OLS. This underlines the benefits of rule-based planning and the modifications from
Section 4.1. Notably, the privileged log replay does not achieve a perfect CLS, partly
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Figure 5.1: Illustration of a nuPlan scenario, with the drivable area (light-gray), the ego-
vehicle (red), the planner prediction (green), and the initial 8s human trajectory
(dashed-black). At the initial frame (t = 0s), PDM-Closed has significant dis-
placements from the human trajectory (resulting in low OLS) while safely
traversing the curve in subsequent iterations. In contrast, MLP-Open accurately
predicts the human trajectory but extrapolates the vehicle movement and veers
off-road (leading to inferior CLS).

due to nuPlan’s LQR controller errors that occasionally cause drifting behaviors from
the human trajectory. PDM-Closed evaluates all proposals based on the expected
simulation outcome. Thus, PDM-Closed accounts for controller errors, resulting in
similar/superior closed-loop performance compared to log replay.

The MLP-Offset model slightly improves upon MLP-Open in OLS, indicating some
meaningful information around the PDM-Closed trajectory for the ego-forecasting
task. However, MLP-Open cannot retain the CLS numbers provided by PDM-Closed.

Finally, PDM-Hybrid combines the OLS and CLS strengths of MLP-Offset and
PDM-Closed, respectively. Our preliminary PDM-Hybrid* planner achieves identical
performance while being less efficient due to added compute of GC-PGP as PDM-Open
module. Notably, the closed-loop abilities of the hybrid planners solely originate from
PDM-Closed. The learned modules enable long-horizon ego-forecasting and boost the
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Method OLS ↑ CLS-NR ↑ CLS-R ↑ Score ↑

PDM-Hybrid* 83 93 93 90
hoplan [55] 85 89 88 87
pegasus_multi_path [124] 88 82 85 85
GameFormer [59] 84 81 84 83

Urban Driver [102] 86 68 70 75
IDM [110] 29 72 75 59

Table 5.3: nuPlan Challenge 2023. The preliminary PDM-Hybrid* planner ranked first
on the leaderboard.

open-loop score while adding no clear benefit for the closed-loop planning task.

In Table 5.2, I summarize the PDM-Hybrid performance for each scenario type
individually. Given the imbalance and overlap of some scenario types, it is hard to
highlight clear tendencies. However, the PDM-Hybrid has difficulties in CLS and OLS
for scenarios that involve turns and high lateral acceleration. The CLS-R and CLS-
NR results are well aligned, except for the scenario type near_multiple_vehicles
where CLS-R is notably lower. The simple IDM background agents regularly block
the road, which can hinder progress compared to the recorded human driver.

I compare the PDM-Closed and MLP-Open planner in Fig. 5.1 to illustrate the mis-
alignment between the OLS and CLS metrics. In the initial frame, the PDM-Closed
planner significantly differs from the ground truth (leading to low OLS) while steadily
following the road with substantial progress (resulting in high CLS). Conversely,
MLP-Open achieves high OLS by accurately predicting the human trajectory. Due to
extrapolating behavior and accumulating errors, the MLP-Open planners drifts off the
driveable area, yielding a poor CLS.

5.2.2 Leaderboard 2023

For the nuPlan Challenge, our team submitted the preliminary PDM-Hybrid* planner
to the leaderboard. The leaderboard considers the mean of OLS, CLS-NR, and CLS-R
as the overall score (see Table 5.3). PDM-Hybrid* ranked first out of 25 participating
teams from 11 countries. I describe the top competing teams in the following.

Horizon Robotics. The hoplan method ranked second [55], and is based on
rasterized BEV images as input. The model applies a UNet-like autoencoder on
the input image [98], with two heads for (1) the occupancy prediction of dynamic
obstacles [56] and (2) a heatmap prediction for the future ego locations [43]. Given a
rule-based post-solver [6, 57], an initial trajectory prediction is optimized to avoid
occupied areas, to align with the heatmap, and to consider a set of kinematics terms.

Pegasus. The pegasus_multi_path planner ranked third [124] and considered a

45



Chapter 5. Experiments

Experiment OLS ↑ CLS-NR ↑ CLS-R ↑ Time ↓

w/o forecasting 32 86 86 90
w/o lateral 40 89 89 58
w/o longitudinal 47 88 88 65
w/o simulation 43 80 80 76
w/o brake 42 91 91 93

PDM-Closed 41 93 92 91

Table 5.4: Module Ablations. The performance across sub-challenges of PDM-Closed
without (w/o) the listed sub-modules. The runtime is specified in ms.

vectorized representation of the environment combined with a transformer encoder-
decoder architecture [112]. The decoder outputs a set of trajectory proposals (and
corresponding scores) based on manually tuned anchor seeds [20]. The planner
updates the output trajectory every 2 seconds to avoid controller error accumulation.
Detected collisions or off-road infractions trigger a trajectory update. The planner
selects the highest-scoring proposal without a collision, or applies an emergency
brake, if all proposals are expected to collide.

Nanyang Technological University. The GameFormer planner ranked fourth and
won the innovation award [59]. The planner is based on a centerline that includes
lane changes given a set of manually designed criteria. A transformer encoder-decoder
architecture, based on [58], predicts the initial trajectory and creates a forecast of
nearby agents. The planner projects the ego-trajectory on the centerline and creates
centerline occupancies with the agents’ forecasts. Finally, a post-solver (based on
Gauss-Newton) optimizes the trajectory longitudinally on the centerline for a set of
objectives. These include centerline occupancy avoidance, speed-limit compliance, or
penalties for uncomfortable driving.

Overall, the leaderboard results are well aligned with the Val14 benchmark (see
Table 5.1). Our hybrid planner outperforms all submissions in CLS with a substantial
margin while having slightly subpar OLS. All high-ranked planners fundamentally
rely on rule-based post-solvers or post-processing steps to counteract the OLS-
CLS trade-off. The vectorized scene representation (e.g., in pegasus_multi_path
or GameFormer) shows no performance benefit compared to rasterized inputs (i.e.,
hoplan). Note that the closed-loop behavior of our hybrid planner is exclusively
determined by PDM-Closed. Consequently, it remains unclear how learned methods
or modules can be effectively applied to the closed-loop planning task.
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w/o forecasting 86 94 99 100 99 88 88 100 85
w/o lateral 89 98 98 100 98 93 86 100 94
w/o longitudinal 88 98 97 100 99 89 89 100 93
w/o simulation 80 91 97 99 100 77 92 100 92
w/o brake 91 97 99 100 99 93 90 100 95

PDM-Closed 92 98 99 100 99 94 90 100 95

Table 5.5: Module Ablations CLS-R. Performance of the reactive closed-loop simulation
without (w/o) specified sub-modules of PDM-Closed.

5.3 Expanded Studies

This Section offers several comprehensive ablation studies that further investigate
the PDM-Closed planner and PDM-Open ego-forecasting model.

5.3.1 Module Ablations

In the following, I ablate several components of PDM-Closed to examine their im-
portance across sub-challenges and their impact on runtime. The results are shown
in Table 5.4, with a summary of all multiplier and weighted metrics for CLS-R in
Table 5.5. Note that runtime measurements have some variability.

Despite its simplicity, the constant velocity forecast is highly effective, adding no
significant runtime while improving metrics across simulation modes. In closed-
loop, the forecast improves in collision avoidance (NC), near-collision avoidance
(TTC), and even comfort (C). Fig. 5.2 shows a nuPlan scenario for PDM-Closed,
where the planner safely takes an unprotected left turn given the linear forecast
of the oncoming traffic. Although not intended for PDM-Closed, the forecast yields
substantial improvements in OLS since the proposals consider the movement of
dynamic agents during generation.

For the proposal ablation, I remove the later offsets (±1m) and separately remove
all lateral proposals except one IDM policy with 80% of the speed-limit as target
velocity. The number of proposals strongly impacts the execution time since they
affect the proposal generation, simulation, and scoring. Longitudinal proposals can
mainly be processed over a batch dimension (e.g., for leading agent extraction or
centerline interpolations), thus, requiring less time compared to lateral proposals.
The longitudinal and lateral alations show similar importance for the closed-loop
scores. The proposal variety enables the planner to stay in the driveable area (DAC),
avoid near collisions (TTC), and achieve progress (EP). Interestingly, removing the
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Figure 5.2: PDM-Closed in CLS-NR during an unprotected left turn. The ego-vehicle (red)
waits for the oncoming vehicles (blue) to pass. Afterward, the planner safely
turns into the casino driveway.

longitudinal proposals achieves the highest OLS, further demonstrating the OLS-CLS
misalignment.

A fundamental concept of PDM-Closed is the proposal scoring based on the simulated
vehicle movement. When assuming perfect tracking of trajectory proposals (i.e.,
removing simulation), the CLS performance of PDM-Closed decreases drastically.
The scoring function is unable to determine the most appropriate proposal, resulting
in more at-fault collisions (NC) and near collisions (TTC).

Lastly, the emergency brake constitutes a simple mechanism for at-fault collision
(NC) and near-collision avoidance (TTC).

5.3.2 Cost Function Ablations

This study examines the cost function of PDM-Closed used for scoring the proposals.
The results across sub-challenges are shown in Table 5.6, with the complete multiplier
and weighted metric results of the CLS-R task in Table 5.7.

The re-implemented metrics are thoroughly optimized, allowing batch-wise scoring
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Experiment OLS ↑ CLS-NR ↑ CLS-R ↑ Time ↓

w/o No at-fault Collision 42 91 91 90
w/o Drivable Area Compliance 43 82 81 93
w/o Driving Direction Compliance 42 92 92 94

w/o Time to Collision 42 91 90 87
w/o Ego Progress 27 77 77 92
w/o Comfort 42 93 92 91

PDM-Closed 42 93 92 91

Table 5.6: Metric Ablations. The performance across sub-challenges of PDM-Closed
without (w/o) re-implemented metrics for trajectory proposal scoring. The
runtime is specified in ms.

of the proposals. Thus, most ablated metrics, except NC and TTC, do not cause a
measurable decrease in runtime. Bounding box intersections are slow to examine but
are required in both metrics for collision checking.

In closed-loop, the DAC and EP metrics are precious for PDM-Closed. DAC fil-
ters proposals that lead to off-road infractions, while EP disapproves stationary
or low-progressing proposals. Since the planner employs IDM policies relative to
the centerline, the proposals have little tendency for collisions or driving-direction
infractions. Therefore, the NC and DDC metrics have moderate importance but
yield improvements in some scenarios (e.g., when encountering controller errors). The
TTC re-implementation is well-aligned with nuPlan’s version, leading to significant
improvement in CLS. Interestingly, PDM-Closed achieves the same OLS and CLS
performance when dropping the comfort metric. Given its lowest overall weight, the
remaining metrics may override the comfort metric.

The multiplier metrics have a filtering role for PDM-Closed, assigning a zero score
to proposals with severe traffic violations (e.g., collisions). Conversely, the weighted
metrics rank the proposals without violations. The continuous progress metric
typically plays the primary role in ranking, given that TTC and C are binary
0-1 values. If the progress metric is ignored, the ranking ability vanishes, and the
planner exhibits unnecessarily slow driving behavior. Therefore, ignoring the progress
metric decreases CLS and OLS, whereas other ablated metrics have no significant
effect on open-loop evaluation.

5.3.3 Ego-Forecasting Studies

An interesting insight from the main study in Section 5.2 is that MLP-Open outperforms
all baselines on the same training and evaluation benchmark, despite the simple
architecture and input. In the following, I conduct further experiments to investigate
the characteristics of ego-forecasting with MLP-Open.
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w/o NC 91 96 99 100 99 92 91 100 95
w/o DAC 81 98 88 100 99 93 91 100 95
w/o DDC 92 98 99 100 99 94 90 100 95

w/o TTC 90 98 99 100 99 88 91 100 95
w/o EP 77 99 99 100 95 95 59 100 71
w/o C 92 98 99 100 99 94 90 100 95

PDM-Closed 92 98 99 100 99 94 90 100 95

Table 5.7: Metric Ablations CLS-R. Performance of the reactive closed-loop simulation
without (w/o) re-implemented metrics for proposal scoring of PDM-Closed.

Size OLS ↑

0.04 k 79
0.4 k 84

4 k 86
40 k 85

(a) Training Size

Cent. Hist. CLS-R ↑ OLS ↑

- - 51 69
- ✓ 38 72
✓ - 54 85
✓ ✓ 54 86

(b) Input Ablations

Method OLS ↑

Baseline 86
Shorter centerline 84
Coarser centerline 86
Smaller MLP 84

(c) Miscellaneous

Table 5.8: PDM-Open Studies. Results of the open-loop score (OLS) and closed-loop score
reactive (CLS-R) for several studies. I investigate (a) scaling the training set
based on the scenarios per type, (b) ablating the centerline (Cent.) and history
(Hist.) input, and (c) varying the centerline parameters or model architecture.
The default configuration of PDM-Open is highlighted in gray.

First, I test multiple data scales around the original 4k samples per scenario (see
Table 5.8a). Specifically, I train MLP-Open with a maximum of 40k, 400, and 40
scenarios per type, resulting in about 922k, 20k, and 2k training samples, respectively.
Additional training data yields no improvements, resulting in a slightly lower OLS of
85. The model might overfit on majority scenario types that are more dominantly
sampled for the large training set. With significantly lower orders of training samples,
the MLP-Open model still achieves good OLS scores of 84 or 79. I observe that
MLP-Open learns to extrapolate the vehicle movement along the centerline, which
suggests requiring little data for learning.

In Table 5.8b, I compare MLP-Open variants when omitting the centerline or history
inputs. The model which receives just the current ego state (first row) has an OLS
of 69 and thereby still outperforms PlanCNN in ego-forecasting (OLS=64, Table 5.1).
Adding the history states has little impact on OLS with a drop in CLS. Central
for MLP-Open is the addition of the centerline input. Prior work [131] that inspired
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Method OLS ↑ M
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Urban Driver [102] 82 94 78 96 60 94
GC-PGP [48] 82 95 83 94 62 90
MLP-Offset 87 97 87 96 68 94
MLP-Open 86 96 86 97 67 94

Table 5.9: Open-loop Sub-metrics. Individual scores of the weighted and multiplier
metrics for open-loop evaluation. Across the sub-metrics, the MLP-based methods
outperform the Urban Driver and GC-PGP baselines.

the design of MLP-Open showed competitive performance for 3s ego-forecasting on
nuScenes [16], based on ego history states and a high-level command (i.e., turn
left, go straight, or turn right). The authors remark that precise ego-forecasting in
straight-driving scenarios leads to the open-loop performance of their MLP-based
approach. However, the results in nuPlan suggest that more directional information
is required for 8s ego-forecasting, e.g., in the form of a centerline.

Moreover, I examine three MLP-Open variants in Table 5.8c: a shorter centerline (30m
vs. 120m), a coarser centerline (with poses every 10m vs. 1m), and a reduced hidden
dimension (512 vs. 256). A smaller hidden dimension and a shorter centerline lead to
a decrease in OLS of 84. The coarser centerline demonstrates identical performance
to the baseline. Therefore, MLP-Open can benefit from distant route information
without relying on fine granularity.

(a) MLP-Open (b) GC-PGP [48] (c) Urban Driver [102]

Figure 5.3: Comparison of a nuPlan scenario (6bc4abef0de65d50), with the drivable area
(light-gray), the ego-vehicle (red), the planner prediction (green), and human tra-
jectory (dashed-black). The (a) MLP-Open model is accurate for ego-forecasting
that requires lane-following over a long horizon. In comparison, (b) GC-PGP
or (c) Urban Driver have significantly higher displacements, leading to a zero
open-loop score.
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For a complete overview, I summarize the OLS sub-metrics for several ego-forecasting
models in Table 5.9. The MLP-based models primarily outperform GC-PGP and
Urban Driver in the displacement metrics and the miss-rate. Given the PDM-Closed
trajectory, the MLP-Offset model is indirectly informed about vehicles or traffic
lights ahead, which slightly improves the OLS sub-metrics. However, all models
achieve similar scores for the average and final heading error, with the exception of
GC-PGP. Overall, the estimation of the position appears to be more difficult than the
orientation.

As mentioned before, the strength of MLP-Open primarily lies in forecasting the
ego-vehicle along the centerline, as shown in Fig. 5.3. Although GC-PGP and Urban
Driver receive similar inputs of the ego state and the route, MLP-Open performs
significantly better in OLS for scenarios that involve curves. I expect that accurate
lane-following is an effective strategy for ego-forecasting, which is simplified by the
centerline-only scene representation.
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6 Discussion

In this work, I examine simple yet powerful methods for rule-based planning and
learning-based ego-forecasting on the nuPlan benchmark. The results reveal profound
misconceptions and shortcomings in the field of vehicle motion planning.

The physical vehicle state and a route path are sufficient input for accurate ego-
forecasting. The proposed MLP approach outperforms all methods in open-loop
metrics while ignoring actors in the environment and only considering a centerline
for map information. Driving without knowledge of the environment is infeasible
in the real world, as demonstrated by the poor closed-loop outcomes. Importantly,
models with detailed actor and map input (on top of the ego states) show a similar
level of performance. This indicates a shortcut of extrapolating the vehicle movement
to achieve low displacement errors without learning the underlying expert behavior
and decision-making. More research is needed to improve closed-loop planning with
imitation-based methods in nuPlan.

The previous insight underlines the fundamental misalignment between open- and
closed-loop evaluation. While prior work often relies only on open-loop assessments [57,
64], this thesis demonstrates an inverse relationship to closed-loop metrics that more
realistically resemble driving performance. Overall, learned methods have strong
ego-forecasting capabilities while driving poorly in closed-loop settings.

Conversely, rule-based planners exhibit the opposite trend with strong closed-loop
capabilities. The proposed PDM-Closed planner can generalize on the complex nu-
Plan scenarios while leveraging only a small set of car-following trajectory proposals.
PDM-Closed can anticipate the closed-loop vehicle movement with the internal sim-
ulator, enabling reliable scoring of the proposals. Therefore, I find differentiable
simulators [102] or world-models [46, 47] to be promising directions to improve
learned planners by incorporating closed-loop dynamics during training.

The PDM-Hybrid planner executes the driving maneuvers from the rule-based planner
while incorporating a learned model for long-term ego-forecasting. The hybrid design
primarily serves the leaderboard structure for the 2023 nuPlan Challenge, where
PDM-Hybrid claimed overall victory. All top contenders submitted hybrid approaches
where rule-based priors ensure closed-loop performance. This indicates that rule-based
or hybrid planners exhibit promising potential for future research.

Open-loop metrics are insufficient and misleading for the evaluation of motion
planning. In design, displacement metrics favor learned planners while disregarding
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Chapter 6. Discussion

the evident benefits of simple rule-based methods. Given the findings of my thesis,
I discourage the use of open-loop metrics in autonomous driving research, as they
potentially hinder advancements toward robust vehicle motion planning.

Limitations. There are important limitations surrounding the planning and simula-
tion approach of this work. All PDM planners rely on privileged offline perception and
HD map inputs, which may not be available in the real world. Although prior work
successfully demonstrated real-world employment of learned planning methods devel-
oped based on perfect perception [11, 102, 86], it remains unclear how the insights
(i.e., around rule-based methods) transfer to actual modular pipelines. Moreover, the
data-driven simulation of nuPlan has inherent limitations. The environment record-
ings are centered around the human operator. Obstacles can unexpectedly occur
ahead of the ego-vehicle in simulation. Since long scenarios would require identical
progress of the ego-vehicle and human driver, only short simulations are possible.
Therefore, the PDM planner is marginally penalized for not executing lane changes.
Collisions that occur in between lanes are more strictly declared to be “at-fault”,
resulting in additional risk attached to lane changes. For CLS-NR, the background
vehicles move as observed in the real world while behaving overly aggressively when
disregarding the ego-vehicle. In CLS-R simulation, the non-ego vehicles are too
passive by strictly following the centerline with an IDM longitudinal control. I regard
data-driven traffic simulation or initialization as promising directions to refine the
reactive environment or to enable long simulations.

Conclusion. The field of motion planning still requires substantial innovation for
robust and scalable solutions. Data-driven simulators like nuPlan provide accessible
platforms to develop and test novel techniques with real-world scenarios. In this
work, I conduct the first rigorous experimental study on nuPlan, where I reveal
and investigate several shortcomings of evaluation schemes and learned methods
for motion planning. Based on these insights, the proposed PDM-Hybrid planner
combines the strengths of rule-based planning and long-horizon ego-forecasting.
Together with my team members, I participated in the 2023 nuPlan Challenge, where
the PDM-Hybrid planner outperformed all competitors and claimed victory.
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