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ABSTRACT

Event cameras are novel sensors that output a stream of asynchronous per-pixel
brightness changes called ‘events’ rather than capturing brightness images. They
offer outstanding performance in capturing high-speed motion and high dynamic
range scenarios where traditional cameras are prone to fail. In particular, au-
tonomous systems can benefit from event cameras by acquiring more robust vi-
sual information. Although the events theoretically encode a complete visual sig-
nal, event streams are incompatible with conventional computer vision techniques.
Recent work has demonstrated the qualitative reconstruction of intensity images
from event streams. This approach acts as a bridge between event-based vision
and conventional computer vision. This report aims to introduce the field of event
vision, present state-of-the-art image reconstruction techniques and examine their
application for autonomous driving.

1 INTRODUCTION

Event cameras are bio-inspired vision sensors that operate fundamentally different to conventional
cameras. Instead of acquiring a sequence of images at a fixed frame rate, event cameras record pixel-
wise intensity changes (called “events”) asynchronously at the time they occur (Gallego et al.,[2020).
The output is a stream of events, each encoding the time, location, and polarity of the brightness
change (as depicted in Figure[T). Event cameras offer several advantages over traditional cameras:
high temporal resolution, high dynamic range, and low power and bandwidth requirements.

Event sensors are fast (in the order of ps),
lightweight, and robust alternatives for acquir-
ing visual information. Event cameras are ad- standard
vantageous where traditional cameras have short- gﬁ;ﬁ? <
comings, e.g., in fast-motion scenarios and under
challenging illumination conditions. Conventional
cameras constitute a primary sensor for many self-

driving cars, together with LiDAR and radar sen- event

sors (Chen et al 2020). However, advanced au- output:

tonomous systems require reliable vision to operate L

safely in their environment. Thus, event cameras Time *
could serve as an alternative or complementary vi-

sion sensor for perception tasks in self-driving. Figure 1: Comparison of standard and event

) cameras when recording a rotating disk with a
Recent work shows that event cameras improve —pJack dot. While the conventional camera cap-
end-to-end steering prediction of autonomous sys-  gures discrete frames, the event camera contin-
tems, such as self-driving cars (Binas et al., 2017, yougly reports pixel-wise brightness changes.
Maqueda et al., 2018; Hu et al., 2020) and robots  Fjgure from Rebecq et al (20196).
(Moeys et al.|[2016). When using specialized algo-
rithms, event cameras have shown remarkable per-
formance in tasks such as optical flow (Benosman et al.l 2013; [Bardow et al.l 2016} |[Zhu et al.,
2018b), feature tracking (Kueng et al. 2016} |Zhu et al., [2017), and visual odometry (Kim et al.,
2016; [Rebecq et al.L[2016;2017). On the other hand, such methods are highly task-specific and can-
not offer a broadly applicable framework for processing event data in diverse tasks. While the results
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Figure 2: Image reconstructions of E2VID from [Rebecq et al (2019b) in driving scenarios under
challenging lighting conditions. The first row shows event frames, while the second row shows
images from a regular camera. The reconstructions of E2VID in the third row can capture the scene
in a high dynamic range and without motion blur.

indicate the value of event cameras, more advanced paradigms for autonomous cars and robots de-

pend on various perception tasks from computer vision (Janai et al, 2020} [Yurtsever et al, [2020).

Since the output of event cameras is an asynchronous stream of events (instead of conventional
image frames), established methods from computer vision are not directly applicable.

An approach in the literature to overcome this limitation is the reconstruction of conventional in-
tensity images from event cameras, which allows the visualization of events or the application of
off-the-shelf computer vision algorithms. Early approaches focused on reconstructing images by si-
multaneously estimating the event camera movement and temporal brightness gradients
2011} [Kim et all, [2014). [Bardow et al|(2016) formulated reconstruction as an optimization prob-
lem to estimate intensity images and optical flow based on an energy minimization problem with
a sliding window. Another approach is to filter the event stream, e.g., spatially via time-surfaces
(Munda et al, 2018)), or temporally (Scheerlinck et all 2018)), and directly integrating the events in
a pixel-wise manner. This research insight focuses on the work of [Rebecq et al| (2019a3b), which
proposed E2VID, a neural network trained to reconstruct images from events in a supervised fash-
ion. E2VID achieved a significant leap in reconstruction quality compared to previous work and still
constitutes a state-of-the-art method in the field. Section [3analyzes E2VID and presents follow-up
research of the approach (Scheerlinck et al., 2020; [Stoffregen et all [2020). Before that, Section 2]
provides a general background in event vision and examines several approaches to represent event
data. Event cameras are a radically different way to perceive visual information and promise to be
particularly impactful in autonomous driving. Section 4] discusses the challenges and opportunities
of event cameras for autonomous driving and the role of image reconstruction.

2 BACKGROUND

Event sensors are inspired by the functionality of the human retina. Increments and decrements
in light stimulate photoreceptor cells that subsequently send signals (called “spikes”) to the brain
(Posch et all, 2014). This section formally presents how event cameras operate and introduces
established data representations of events.
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2.1 EVENT GENERATION MODEL

Event sensors report an asynchronous stream of events that are independently triggered by pixels
for logarithmic changes in brightness L = log I. In a noise-free scenario, this can be formalized
by the ideal event generation model (Mueggler et al., 2018 |Gallego et al., 2020). Here an event is
formulated as a tuple e;, = (x4, tx, px) that occurs at time ¢, and at a pixel x; = (2, yx) ', if the
brightness increment exceeds a contrast threshold C'. The condition can be formulated as

Pr(L(xk, tr) — L(xp, t — Aty)) > C, (D

where Aty is the elapsed time since the last event at pixel x, and p;, € {—1,1} is the polarity
(or sign) of the brightness change. The model can be extended for colored events (Li et al., 2015;
Scheerlinck et al.| [2019). The threshold C' depends on bias currents on the sensor and can be fixed
by the user for the given conditions (Nozaki & Delbruckl 2017).

An event vision sensor has several benefits in design. The pixel circuit is fast in detecting an event,
and the camera can timestamp the event with microsecond resolution. Therefore, event cameras
have a high temporal resolution without motion blur like conventional cameras. The pixels operate
independently without waiting for global exposures, resulting in a low latency (sub-millisecond).
Third, each pixel can adapt to bright and dark stimuli due to its independence and logarithmic
operation. Thus, the event sensor can acquire visual information with a high dynamic range.

Under ideal circumstances (noise-free, ideal sensor response), event sensors can capture real bright-

ness images when integrating the events over time. The pixel log-intensity L(x;t) is reconstructed
by accumulating the events e, = (X, tx, pr) as follows,

f)(x; t) = L(x;0) + Z prCOk(x — X )0p(t — tr), 2)

0<tp<t

where L(x;0) is the true log-intensity offset at ¢ = 0, dx and Jp are the Kronecker and Dirac
delta functions, respectively, which select the pixel to update (Mueggler et all2017). A step func-
tion approximates the continuous change of intensity. However, in practice, even a fixed threshold
C highly varies depending on factors such as the temperature (Nozaki & Delbruck, 2017), man-
ufacturing imperfections, and circuit noise (Wang et al.l 2020), but also the polarity of the events
(Stoffregen et al., [2020). Therefore, it must be assumed that C' is neither constant nor uniform for
each pixel. Furthermore, the log-intensity offset is unknown. Thus the reconstructed intensity is
relative to ¢ = 0. [Scheerlinck et al.| (2018)) address the limitations by applying a pixel-wise filter
on the event stream and merging the pixel intensity of a conventional camera. Nonetheless, filtering
methods still suffer from artifacts caused by the noisy event stream while requiring a regular camera
for static information.

2.2 EVENT REPRESENTATION & PROCESSING

Due to the novelty of event cameras, there is no consensus collection of algorithms to extract features
from events. The following introduces common data representations of events and corresponding
processing methods.

Individual Events e, = (xj,tx,pr) are used for processing methods that are applied for each
incoming event. This allows minimal latency but requires heavy processing, especially at high event
rates. Methods include Spiking Neural Networks (SNNs), along with probabilistic and deterministic
filters. Examples in literature include: (Kim et al., 2014} Scheerlinck et al., [2018}; |Paredes-Vallés
et al.,[2019; |Gehrig et al.| 2020).

Event Packets: Packets ¢, = {e,}1_, are aggregated groups of subsequent events that are pro-
cessed together. The packet size NV is either fixed or varies to capture a constant time interval At.
Packets introduce latency but require fewer processing steps which can be crucial for real-time ap-
plications. Possible processing methods depend on the downstream representation of the package,
such as event frames or voxel grids. Examples in literature: (Rogister et al., 2011; |[Mueggler et al.,
2018; Rebecq et al., 2019agb)).

Event Frames: Event packets are converted into an image structure (2D grid) by a simple method,
e.g., by pixel-wise summation of the events or accumulating the polarity. Thereby, the images



Published as a conference paper at ICLR 2023

Figure 3: Overview of E2VID from [Rebecq et al.| (2019b). The incoming events (visualized as
red/blue dots) are collected in packets €, with a fixed number of N events. The packets are converted
into a 3D spatiotemporal tensor E;, that forms the input together with the previous state s;_1. The
recurrent network outputs a new image reconstruction 7y and the updated state s for each event
packet.

represent a 2D pixel histogram of the events. This approach removes a large portion of temporal in-
formation. Nevertheless, event frames are often used in literature because they allow the application
of well-studied computer vision algorithms, even though event frames do not share the statistics of
natural images. It enables the usage of successful deep learning architectures of vision tasks, such
as Convolutional Neural Networks (CNNs). Event frames are depicted in Figure[2]and [ Examples
in literature are: (Maqueda et al.| 2018} Hu et al.,|2020; Rebecq et al.| [2016; |Cook et al.,[2011).

Voxel Grids: Similarly to frames, an event package is converted into a 3D grid of voxels repre-
senting a spatial-temporal histogram. Events are accumulated in voxels, where the voxel represents
a pixel in a defined time interval. Although time discretization is needed, the voxel grid preserves
more temporal information than event frames. Voxel grids are compatible with CNNs and other
common vision techniques. However, the 3D grid comes with greater memory and computation re-
quirements. Examples in literature: (Bardow et al.| 2016} Wang et al.|[2019} Rebecq et al.,2019a;b)).

Reconstructed Images are regular brightness images reconstructed from events. In contrast to event
frames, reconstructed images share the characteristics of natural images, thus becoming easy to in-
terpret for the user. In addition, reconstructed images ideally capture the benefits of event cameras,
such as a high dynamic range or no motion blur. Therefore, the images act as an intermediate repre-
sentation for event data while being compatible with conventional vision algorithms and applicable
to any downstream task (Rebecq et al., 2019azb)).

3 IMAGE RECONSTRUCTION

In recent years, learning-based methods have been applied to image reconstruction (Barua et al.,
2016; [Wang et al., 2019). Rebecq et al.[(2019agb) introduced E2VID, a recurrent neural network to
reconstruct video frames from an event stream. The network is trained using supervised learning on
simulated data.

The event stream is represented as event packets e, = {ey}~_, with a fixed number of N events.

The goal is to learn a mapping to reconstruct an image Iy € [0, 1]W>H for every incoming event
package. Here, the mapping is a recurrent neural network based on the convolutional auto-encoder
architecture of U-Net (Ronneberger et al., [2015)). Before applying convolutions, each package ¢y,
is converted into a tensor E; representing a spatiotemporal voxel grid. The events are discretized
into B temporal bins, resulting in the input tensor Ej, of shape B x W x H. The input is encoded
by applying several downsampling layers, consisting of regular 2D convolutions and ConvLSTM
layers (Shi et alJ), [2015). The network maintains a state s;, at each time step k, corresponding to a
set of hidden states from the ConvLSTM layers. Thereby, the network becomes recurrent where at
each step k&, the tensor Ej, is encoded based on the past state s;_1 (see Fig. . After the encoding
stage, the network applies intermediate residual blocks and the decoder stage, which utilize bilinear
upsampling and convolutions, together with skip connections of symmetric encoder layers. After a

final prediction layer, the network outputs the reconstructed image Zj.
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(a) Frame (b) E2VID (c) ECNN

Figure 4: Challenging scenes from the MVSEC dataset (Zhu et al.l 2018a). Depicted are (a) the
conventional frame images, (b) failed predictions of E2VID (Rebecq et al., [2019b), and (c) the
predictions of ECNN (Stoffregen et al., 2020). Since ECNN shares the architecture with E2VID
but was trained on augmented data to reduce the sim-to-real gap, the predictions are notably more
robust.

Given the complexity of the task, a large dataset of event streams with corresponding ground truth
images is needed to successfully apply supervised training. Furthermore, the purpose of recon-
structing images is to incorporate the superior aspects of event cameras, such as high dynamic range
or the absence of motion blur. Thus, images of conventional cameras would provide insufficient
ground truth data. Therefore, E2VID is trained exclusively on synthetic data generated with the
event simulator ESIM (Rebecq et al.,[2018) and tested on actual event data.

The network is trained using combined loss with a reconstruction and temporal consistency compo-
nent. The reconstruction term is a calibrated perceptual loss (LPIPS) (Zhang et al., 2018), where the
target image Z; and reconstructed image Iy, are passed into a VGG-Net (Simonyan & Zisserman,
2014), pre-trained on Image-Net (Russakovsky et al., 2015). The loss corresponds to the distance
of the VGG feature maps on multiple layers. The network learns to reconstruct images based on the
statistics of natural images when minimizing the perceptual loss. On the other hand, the temporal
consistency term is added to penalize temporal artifacts between successive frames. The loss is a

weighted L;-distance between subsequent reconstructions, where image Tpq is warped forward to
time k with optical flow maps that are available during training. The term is weighted to reduce the
penalty for occlusions between frames.

Compared to filtering-based methods, E2VID suffers less from artifacts and outperforms previous
methods visually and quantitatively (see Rebecq et al| (2019b))). Moreover, the reconstructions
surpass conventional cameras in low-light and high-speed scenarios, as shown in Figure 2] Due
to the temporal resolution of the events, high frame-rate videos can be reconstructed (in the range
of thousands of FPS). Furthermore, the reconstructed videos allow for processing event data with
well-studied algorithms for conventional cameras directly. The authors demonstrate this by applying
standard vision methods to reconstructions in tasks such as object classification and visual-inertial
odometry, thereby outperforming previous methods specifically designed for event data.

Nevertheless, E2VID comes with limitations that are partially addressed by further research. Firstly,
the reconstructions are computationally expensive, which limits the real-time applicability. For
example, a forward pass of E2VID takes 93 ms for a 1280x720 image on a GPU, which would result
in a 10 FPS video. Therefore, [Scheerlinck et al.|(2020) propose a smaller network, called FireNet,
which reduces the number of parameters by 99% with minor trade-offs regarding the reconstruction
quality. The reduction is achieved by having convolutions without down-sampling and with smaller
kernels, as well as GRUs as recurrent units (Chung et al |2014). Consequently, FireNet runs three
times faster than E2VID on the same GPU (31.01 ms vs. 93.34 ms).

A second limitation of E2VID originates from training solely on simulated data. Thereby, inference
with actual events is carried out exclusively on out-of-distribution data. |Stoffregen et al.| (2020)
propose a new strategy for generating training data by emphasizing the contrast threshold C' when
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synthesizing data. The E2VID network is retrained on data generated with a wide range of contrast
thresholds and noise augmentation to resemble actual event data closer. The training approach im-
proves generalizability (see Fig. ) and outperforms the conventionally trained E2VID across several
benchmarks. The results highlight the vital role of synthetic data in learning-based reconstruction.
The training data must share the statistics of the actual use case.

4  DISCUSSION

Autonomous systems can become more robust by introducing event cameras as visual sensors. With
their temporal resolution, event cameras are ideal for tracking and detection in high-speed scenes.
Their HDR capabilities enable excellent vision at night, even with glaring light sources (e.g., the sun
or oncoming headlights). However, due to their novelty relative to traditional sensors, there are no
established methods to process or fuse event data in existing self-driving systems.

While image reconstructions from events offer a familiar representation, they also introduce flaws.
Learning-based approaches have to be trained exclusively on simulated data. Thus, the simulation
must be tailored to the use case and the camera parameters. The estimation is prone to errors if the
training distribution mismatches the real-world application despite precautions. Dissimilarities of
simulated and real-world data are especially concerns for functional safety in autonomous driving.
Furthermore, image reconstruction with learned models is computationally demanding, resulting
in slow processing even with advanced hardware. Smaller networks can reduce computational cost
(Scheerlinck et al., 2020) but still introduce latency and require hardware accelerators for processing
(i.e., GPUs). Moreover, downstream applications require time to process the images for the actual
task. The application in an autonomous system becomes infeasible when real-time requirements
cannot be satisfied.

Most importantly, image reconstruction is an expensive intermediate step when applied to a down-
stream target task. Reconstruction techniques only transform the provided input and also discard
positive aspects of event cameras. Theoretically, the event stream contains the same visual informa-
tion but in a fast and highly compressed format. Event vision needs a generally applicable framework
to process event streams directly. Spiking Neural Networks (SNNs) seem promising due to fitting
input modality and the same bio-inspired nature. SNNs have shown promising results for specific
tasks, such as optical flow estimation (Paredes-Vallés et al., 2019) or angular velocity regression
(Gehrig et al) 2020). A combination of SNNs with neuromorphic processors would offer a low
memory and low power vision approach that is desirable for autonomous systems (Galluppi et al.,
2014).

Furthermore, conventional cameras and event cameras are not competing but complementary tech-
nologies. Autonomous systems also need visual information in static or slowly varying scenes.
Traditional cameras are ideally suited for such scenarios. It is most likely beneficial to consider both
cameras as input data, either separately or merged. In fact, event and frame-based cameras have been
fused in literature to remove motion blur (Jiang et al., 2020; Lin et al., [2020; |Pan et al., 2019), gen-
erate high-speed videos (Tulyakov et al.l 2021}, and to increase dynamic range (Scheerlinck et al.,
2018). Enhancing videos with event data has potential in numerous areas, such as film-making or
smartphone applications.

For autonomous driving, simulators offer an ideal environment to investigate how event cameras
can be effectively integrated into self-driving cars. Particularly the CARLA simulator provides an
implementation of event camera (see Fig. and offers a customizable platform to test various
sensor, lighting, and weather configurations (Dosovitskiy et al.,|2017). Therefore, benchmarks can
be generated in CARLA under challenging conditions, e.g., at high-speed scenes, at night-time,
or with injected motion blur of the regular camera recordings. The benchmarks would allow the
evaluation of existing approaches in challenging scenarios and examine how event cameras can be
utilized to increase robustness.

Overall, image reconstruction remains an important task in current event vision research. Image
reconstruction functions as a data representation of events. The representation allows for establish-
ing a baseline for a task with conventional frame-based methods. Using off-the-shelf algorithms
enables one to validate that event data offers a valuable contribution before creating more sophisti-

"https://carla.readthedocs.io/en/latest/ref_sensors/#dvs-camera
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(a) RBG Camera (b) Event Camera

Figure 5: Sensor comparison in CARLA |Dosovitskiy et al.|(2017). The RBG camera (a) captures
static information, while the event camera (b) retrieves dynamic information by only sensing pixel-
wise brightness changes. The blue and red pixels in (b) show the polarity of the events.

cated techniques tailored to an approach. Furthermore, the reconstructions remain the most familiar
and interpretable visualization for humans of event data.

5 CONCLUSION

Event cameras introduce a novel approach to how machines perceive and represent visual informa-
tion. They offer several advantages compared to conventional cameras, such as high-speed capabili-
ties, high dynamic range, low power, and low latency. Consequently, event cameras show convincing
potential in autonomous driving, mainly to increase robustness in challenging scenarios. The field
of event-based vision has several challenges ahead, especially the development of algorithms that
unlock the unique properties of events. Intensity image reconstruction can reduce the development
gap by making traditional computer vision accessible to event cameras. This research insight an-
alyzed a line of methods for learning reconstructions as intermediate event camera representation.
Learning-based approaches define current state-of-the-art by training neural networks to reconstruct
images. However, such networks have high computational costs and can only be trained in simula-
tion, restricting their application for autonomous driving. Overall, image reconstruction from events
remains a vital discipline in the current state of research. The reconstructions enable a bridge to
traditional computer vision, are valuable for prototyping, and visualize the outstanding capabilities
of event cameras.
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