
Mathematisch-
Naturwissenschaftliche
Fakultät

Bachelorarbeit

Acetabulum fracture classification on a
large cohort of CT images from German
hospitals using 3D convolutional neural
networks

Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Wilhelm-Schickard-Institut für Informatik
Methods in Medical Informatics
Daniel Wilfried Dauner, daniel-wilfried.dauner@student.uni-tuebingen.de, 2021

Bearbeitungszeitraum: 01.10.2020 - 01.02.2021

Betreuer/Gutachter: Prof. Dr. Nico Pfeifer
Zweitgutachter: -





Selbstständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig und nur
mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem
Wortlaut oder dem Sinne nach anderen Werken entnommen sind, durch Angaben von
Quellen als Entlehnung kenntlich gemacht worden sind. Diese Bachelorarbeit wurde
in gleicher oder ähnlicher Form in keinem anderen Studiengang als Prüfungsleistung
vorgelegt.

Daniel Wilfried Dauner (Matrikelnummer 4182694), January 29, 2021

3





Abstract

Fractures of the acetabulum are complex injuries of the pelvic bone. Preoperative
diagnostics and adequate surgical intervention are crucial in order to anatomically
reconstruct the joint. The Letournel system categorizes the fractures into 10 distinct
classes which allows for standardisation of the treatment. Especially clinicians with
little experience have difficulties in correctly detecting and diagnosing acetabulum
fractures.
In this thesis, Convolutional Neural Networks (CNNs) are applied to offer a computer-
aided approach for the diagnosis of Letournel fractures. The models are trained on a
large cohort of CT scans from hospitals across Germany.
Three CNNs were created to detect acetabulum fractures, classify their surgical
access, and to determine their Letournel class. The fracture detection model achieved
an accuracy of 93.7%. The Letournel classification was able to diagnose the fractures
with a weighted F1-score of 57.3%. Furthermore, the Letournel classification achieved
a weighted F1-score of 85.7% for the prediction of the surgical access.

5





Acknowledgments

First, I want to thank Ralf Eggeling for making this thesis possible and for the
constant support throughout the development. I would like to thank Daniel Dehncke
for the technical assistance in the beginning of this project.
Next, I want to thank Markus Küper and Felix Erne for helping me with the
annotation of the data. Your input helped me to understand the medical perspective
of this subject.
Furthermore, I want to thank my girlfriend Amy Bland, who always supported me
and improved the readability of this thesis with her feedback.

7





Contents

1. Introduction 11

2. Background 15
2.1. Introduction to Neural Networks . . . . . . . . . . . . . . . . . . . . . 15
2.2. Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 20
2.3. Visualization Explanation . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. Methods 29
3.1. CT Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. Results 39
4.1. Fracture Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2. Treatment Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3. Letournel Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5. Discussion 53

A. Appendix: Fracture Detection 57

B. Appendix: Treatment Classification 59

C. Appendix: Letournel Classification 61

9





1. Introduction

The acetabulum is the socket of the pelvic bone. The femoral head articulates with
the pelvis at the acetabulum, which forms the hip-joint, as shown in Figure 1.1.
Fractures of the acetabulum mostly occur during a trauma where the femur applies
high force to the pelvic bone [1]. These fractures are among the most complex injuries
treated by orthopedic surgeons [2]. Patients may suffer from disability or permanent
damage if the acetabulum fractures are not treated correctly.

Figure 1.1.: Anatomy of the pelvis (from [3]). The pelvis bone is shown on the left.
The ventral view of the hip region is shown on the right.
https://creativecommons.org/licenses/by/4.0/

The goal of therapy is the anatomical reconstruction of the joint [4]. An established
classification of acetabulum fractures is the Letournel system. This allows for the
standardization of treatment options and necessary surgical procedures. The fractures
are categorized into 10 classes, as shown in Figure 1.2. Originally Letournel proposed
two main groups of the fractures. The elementary group has a single fracture line
through the acetabulum, whereas the associated group is characterized by multiple
elementary fractures. However, the diagnosed Letournel type also determines the
access for surgical intervention [5], and are grouped accordingly in this thesis.
Acetabulum fractures are either accessed anterior, posterior, or in combination when
required.
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Figure 1.2.: Overview of the 10 Letournel fracture types (adapted from [6]). The
fractures are grouped according to their surgical access.

Qualitative medical imaging, like Computer Tomography (CT), is necessary in order
to visualize the complex structure of the joint. A CT scanner has an X-ray source and
detector, that rotate around the patient [7]. A computer can generate cross sectional
images of the body. CT analysis from the axial plane made the correct classification
of acetabulum fractures easier, compared to conventional X-Ray images [8]. The
introduction of multi-planar reconstruction from the sagittal and coronal plane
further extended the visualization options.

Nevertheless, these fractures are notably difficult to correctly detect and classify,
especially in the case where the physician lacks extensive experience [8]. While
clinician have a variety of laboratory tests, the correct diagnosis of acetabulum
fractures relies on the examination and interpretation of medical imaging. Advanced
methods in Machine Learning can be applied to medical image analysis [9], to
support clinicians in their decision making. A computer-aided approach could
improve the patients care by providing the most suitable diagnosis.

Machine Learning is the study of developing methods that enable computers to
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solve problems by learning from experience. A mathematical model can learn to
solve a task for training data and apply the knowledge to unseen data. Machine
Learning can be divided into several sub-categories, in which Deep Learning has
recently garnered a lot of attention.
Deep Learning is based on Neural Networks, that are parameterized networks of
several artificial neurons. The neurons are grouped into multiple interconnected
layers, which can transform input data (e.g. images) into an output (e.g. predicted
class label). By changing the parameters of the connections and units, the model can
learn patterns and relationships in the data. Nowadays, Neural Networks form the
state-of-the-art approach for complex tasks. These include language modeling [10],
protein-structure prediction [11], or computer vision [12].

In computer vision, the most successful variant is the Convolutional Neural Net-
work (CNN). By transforming an input image with convolutional filters in many
consecutive layers, CNNs can extract high-level features. This approach was first
introduced in the early eighties [13], but recent development and training on Graph-
ics Processing Units (GPUs) made it possible to train deeper networks. In 2012 the
"AlexNet" won the ImageNet competition with five convolutional layers [14]. The
large ImageNet data set consist of 1.2 million images that are classified in 1000
categories [15]. Networks became deeper and more powerful, for example "ResNet"
won the ImageNet competition in 2015 with 152 layers [16].
For medical images, CNNs are applied in fields such as brain tumor segmentation
[17], breast cancer classification [18], or Alzheimer classification [19]. However, CNNs
need an enormous amount of training data in order to make accurate predictions.
The availability of medical images is often restricted due to privacy protection laws
or rare deceases.

Daniel Dehncke developed a computer-aided method for the diagnosis of acetabu-
lum fractures in his master’s thesis [20]. The BG Unfallklinik Tübingen provided
the data of 222 patients, classified according to the Letournel system. A pipeline
was developed to evaluate and select useful CT scans. In the study, 3D CNNs were
utilized to detect fractures and to classify the fractures into three categories. These
categories correspond to the surgical access and are shown in Figure 1.2.
The work showed a promising approach to apply 3D CNNs for acetabulum fractures.
However, the results have certain limitations. Only a small data set of single health
institution was available, which restricted the classification on all 10 Letournel
classes. The CT scans were only classified with the ResNet architecture and it was
unclear how the models detected the fractures.

Since then, 11 health institutions across Germany provided data that was collected
over several decades. The aim of this thesis is further improve the diagnostic per-
formance of 3D CNNs with the large and diverse data set. A survey of modern
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Chapter 1. Introduction

CNN architectures is conducted. These include ResNet, ResNeXt, EfficientNet, and
the Inflated 3D ConvNet (I3D). The predictions are visualized with attention maps,
to inspect the decision-making. The models are trained to detect fractures and to
classify them into the same three categories of their surgical access. Finally, the
models are trained for the classification on all 10 Letournel classes.

This rest of this thesis is structured as follows: in Chapter 2 the theoretical background
for understanding Deep Learning in computer vision is introduced, in Chapter 3 the
methods are explained, in Chapter 4 the results of the experiments are presented,
and in discussed in Chapter 5.
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2. Background

This chapter is influenced by the textbook of Goodfellow et al. [21], which offers more
detailed information about the broad field of Deep Learning. In Section 2.1, the basic
concepts of Neural Networks are introduced. The Convolutional Neural Network is
presented in Section 2.2 and several architectures are discussed, which are used in
this thesis. Furthermore, two approaches are explained in Section 2.3 which offer a
visual explanation of the prediction of Convolutional Neural Networks.

2.1. Introduction to Neural Networks

Neural Networks are a group of Machine Learning models. This Section explains
their components and functionality of Neural Networks. Algorithms for training and
optimization are introduced, together with several techniques to further improve
the prediction.

2.1.1. The Neural Network

The Neural Network consists of several interconnected units. These are called
neurons and an example is shown in Figure 2.1. The neurons form a parameterized
network and are loosely inspired by biological neurons [21].
Each neuron i receives multiple inputs xi = [xi1, ..,xin], which are weighted by a

factor wi = [wi1, ..,win]. The input is processed by calculating the weighted sum of
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Figure 2.1.: The structure of a neuron i. The neuron receives an input xi and calculates
the weighted sum si. A bias bi is added to si and an activation function σ
is applied.
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Figure 2.2.: Example of a feed-forward network, with an input layer, hidden layer
and an output layer.

the input si =
∑n

j=0 wi jxi j. When desired, a node can add a bias bi to the weighted
sum si. Before the neuron outputs a value, a (usually non-linear) activation function
σ is applied to the weighted sum and bias.
The topology of the network is called an architecture. In a layered architecture
the neurons are be grouped in layers, as shown in Figure 2.2. When the layers are
connected in between, they are called linear layers or fully connected (FC) layers.
The neurons and connections mostly do not form a cycle in the graph. This is called
a feed-forward network.
The first and last layers of the network are called the input and output layer,
respectively. Furthermore, the network can have any number of fully connected
layers in between which are called hidden layers.

The neural network calculates a function f (x) for a data point with the feature vector
x. In the forward pass, the vector x is given to the input layer. In each layer, the
neurons process the received input, apply an activation function and pass the output
to the successive layer. At the output layer, the network returns the function f (x) = ŷ,
which is a prediction for the target vector y.
The goal during training is to adjust the weights and biases of the neurons, so that
f (x) ≈ y for each sample in the training set. For classification tasks, the number of
output nodes often coincide with the number of possible classes, where each output
is an estimated likelihood.
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2.1. Introduction to Neural Networks

2.1.2. Activation Functions

The activation functions in the neurons add non-linearity into the network. As a
results, the Neural Network can learn more complex patterns and relationships [22].
The Sigmoid function, also called Logistic function, is a common activation function
for the output neurons. It is defined as:

σ(x) =
1

1 + e−x (2.1)

where x is the weighted sum and bias of the neuron. Sigmoid is often used to compute
the class probability for binary classification, because the value of the function is in
the range of 0 to 1.
In multi-class classification, the probability distribution in the output layer is mainly
computed with the Softmax function. Softmax is an activation function, which takes
a K-dimensional feature vector x and returns a probability for each class i = 1, ...,K
that sum up to 1.

so f tmax(x)i =
exi∑K
j=1 ex j

(2.2)

One of the most widely used activation functions, is the Rectified Linear Unit
(ReLU) function. Compared to Sigmoid, it is easier to optimize, it can lead to better
performance, and can be calculated more efficiently.

ReLU(x) = max(0,x) (2.3)

The ReLu function is mainly used in the hidden layers of the network.

2.1.3. Training & Optimization

In order to make accurate predictions, the neural network needs a set of parameters
that produce the right activation on the output layer. The neural network has a
defined loss function that evaluates how well the model performs for a given input.
The goal of the training is to minimize the loss for the training samples. This is done
by changing the parameter values until the model makes accurate predictions.

Cross Entropy Loss

The cross-entropy loss measures the performance of a classification model that
outputs probabilities for each possible class. Cross-entropy quantifies the difference
between the true and predicted class distribution.

Li(θ) = −

M∑
c=1

yi,clog(ŷi,c(θ)) (2.4)
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Chapter 2. Background

M is the number of classes, log is the natural logarithm, ŷi,c(θ) is the predicted
probability that an observation i is in class c, for a given parameter set θ. The true
probability yi,c is either 0 or 1.
A class specific factor, called weight, can be added to punish certain classifications
differently.

Li(θ) = −

M∑
c=1

weight(c)[yi,c · log(ŷi,c(θ))] (2.5)

This can be useful when a correct classification of a class is important or when the
data set is unbalanced.

The loss function only measures the performance of a single observation i from the
training set. The model needs to find parameters θ that minimize the loss for every
sample. This can be done by minimizing a cost or objective function J(θ) which, for
example, calculates the average loss of the training set for the parameters θ.

J(θ) =
1
n

n∑
i=1

Li(θ) (2.6)

Stochastic Gradient Descent

The Stochastic Gradient Descent (SGD) is a commonly used algorithm to minimize
the objective function. SGD is an extension of the Gradient Descent algorithm.
The Gradient Descent algorithm updates the weights and biases iteratively to reduce
the objective function. The algorithm computes a set of partial derivatives ∇θJ(θ),
which is called the gradient. Intuitively, the gradient indicates the direction the
weights and biases have to be changed, in order to minimize the objective function J.
In an epoch of the training, the parameters are updated as follows:

θ← θ−η ·∇θJ(θ) = θ−
η

n

n∑
i=1

∇θLi(θ) (2.7)

where n is the number of observation’s i. η is called the learning rate and determines
the step size in each iteration.
Gradient descent can be slow, due to the expensive calculation of the gradients
for the complete training set. SGD approximately estimates the true gradient of
J(θ) using a small subset of samples, called a batch. In each epoch, the weights are
updated multiple times for each batch:

θ← θ−
η

n′
∇θ

n′∑
i=1

Li(θ) (2.8)

where n′ is the batch size. The original SGD has a batch size of one. Mini-batch SGD
has a batch size greater than one. However, both variants are commonly referred as
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2.1. Introduction to Neural Networks

SGD.

A common technique to accelerate the training, is to add momentum to SGD.
Momentum has a velocity term v which combines the gradients of the previous
iteration with the current gradients. The parameter update is given by:

v← αv−
η

n′
∇θ

n′∑
i=1

Li(θ)

θ← θ+ v

(2.9)

where α ∈ [0,1) is a hyper-parameter, that determines the decay of the previous
gradients.

Optimizer like SGD use the back-propagation algorithm. Back-propagation is often
misunderstood as a learning algorithm itself but only refers to the computation of
the gradients. The algorithm iterates backwards from the last layers, which is called
the backwards pass. The gradient of the loss with respect to each parameter are
calculated, using the chain rule. The back-propagation algorithm is highly efficient
and enables optimizer like SGD to train large Neural Networks.

2.1.4. Regularization

Neural Networks are complex structures, sometimes using several million parameters
for the prediction. Often the model overfits, which means it tries to explain the data
too closely, by learning irrelevant patterns (e.g. noise). As a result, the model fails to
generalize the data and to give reliable predictions outside the training set.
In a broader sense, regularization is a process that hinders a machine learning model
from overfitting. The aim is to reduce the generalization error and to find a more
optimal parameter configuration.

L2 Regularization

Many regularization methods constrain the model parameters θ, by adding a norm
penalty Ω(θ) to the objective function J(θ). The approach is to limit the capacity of
the model.

J̃(θ) = J(θ) +α ·Ω(θ) (2.10)

where J̃ is the regularized objective function and α ∈ [0,∞) a hyper-parameter, which
determines the intensity of the weight penalty.
A common norm penalty is the L2 regularization, defined as followed:

Ω(θ) =
1
2
||w||22 (2.11)
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Chapter 2. Background

where w are the weights of the model. Norm penalties usually do not affect the biases
of the network. L2 regularization is also known as weight decay or ridge regression.
Intuitively, by penalizing the weights, the model can learn less specific patterns.
Therefore, the model improves in generalization performance.

Dropout

A simple, yet effective regularization technique is dropout. In each epoch, a random
set of neurons in a layer are omitted. The probability in a layer for a neurons to
"drop-out" is an additional hyper-parameter. Dropout is only applied during training
and hinders a unit from relying too much on other units [23].

Data Augmentation

The best way to reduce the generalization error of a model is to add more data. In
practice, the amount of data is limited. A solution for this problem is to generate
fake data. This technique is particularly useful when classifying images, because of
the enormous variety of operations that can be applied without changing the basic
content.
Typical augmentation techniques on images are zooming, rotation, and translation.
The model can learn the same features, but in different sizes and from several angles.
However, it is essential that the class of the input remains the same. For example,
when a letter ’d’ is flipped horizontally, it results in the letter ’b’. This would be an
inappropriate operation for text recognition.

2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a special kind of Neural Networks
for data with a grid-like topology. For example, an image can be described as a
matrix, where each pixel is represented with RGB values or a grey-scale value. In
a traditional feed-forward network, the layers are fully connected with separate
parameters describing an interaction between input and output neurons. An image
can have millions of pixels, which would lead to an extensive number of parameters.
CNNs solve this problem with the use of a mathematical operation called convolution.
CNNs have been successfully applied to image classification [16], video recognition
[24], and in medical image analysis [9].
This section offers a introduction into CNNs and their components. Furthermore,
several CNN architectures are introduced, which were used in this thesis.
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Figure 2.3.: Example of a 2D convolution operation. The kernel moves over the input
map, calculates the inner product and fills out the feature map. In this
example, the input and output channel is one.

2.2.1. Convolution & Pooling

In general, a convolution is a mathematical operation that combines two functions
[21]. In CNNs, the first argument is called the input and the second argument the
kernel. The output of the convolution is referred to as feature map.
If a 2D input image is given, the CNN can slide with the kernel matrix over the input
in x and y direction. For the overlapping values, the inner product is calculated and
forms a value in the feature map, as shown in Figure 2.3. The kernel size depends
on the architecture and the weights of the kernel are adjusted during training. The
kernel extracts essential features, like edges or lines.

A kernel is usually smaller than the input image and has less parameters than a fully
connected layer between the input and output. Therefore, the layers in a CNN are
locally or sparsely connected. This improves the memory requirements and enables
a CNN to efficiently process large inputs, like images.

Furthermore, a convolution has a defined number of input feature maps, or input
channels. For example, a RGB image has three channels and a grey scale image only
one. A convolution produces several output feature maps, or output channels. For
each output feature map, the convolution has a distinct kernel that moves across all
the input feature maps. The resulting feature maps are summed up element-wise to
produce the kernel specific output feature map [25].

A typical layer of a CNN consist of three stages. First, a convolutional layer generates
several feature maps. In the second stage, a non-linear activation function, often
ReLU, is applied. Lastly, a pooling function is used to modify the output.
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Chapter 2. Background

Pooling PoolingInput Convolution

Convolution


GAP Output

Figure 2.5.: Structure of a CNN with multiple convolution and pooling operations.
Each convolution produces several output feature maps with a specific
kernel. The last layers consist of Global Average Pooling (GAP) and a
linear output layer. (Image from [28], inspired by [29])

A pooling function filters the input feature map, by removing unnecessary informa-
tion. As a result, pooling can have a regularizing effect. Similar to the convolution,
the pooling operation moves with rectangular kernel over the input. A typical
operation is max pooling, where only the maximum value of the kernel is passed to
the next layer. If the average value is passed, the operation is called average pooling,
as shown in Figure 2.4.
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Figure 2.4.: Examples of Max Pooling, Average Pooling and Global Average Pooling
(GAP). GAP has multiple input feature maps.

Global Average Pooling (GAP) is a pooling operation that calculates the average of a
whole feature map. GAP is mostly applied on multiple feature maps and therefore,
returns a one dimensional vector. GAP sums out spatial information, which means
the network is more robust to spatial translation [26]. In some CNN architectures,
GAP is applied after the last convolution layer [16][27]. A linear layer with softmax
is connected, to return the probabilities for each class.
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2.2. Convolutional Neural Networks

Kernel

Input

Feature Map

Figure 2.6.: The convolution operation extended to a third dimension. The 3D kernel
moves over the input and computes the output feature map. The input
and output channel is one.

Typically a CNN architecture has several convolution and pooling layers, combined
with activation functions. They are often hidden layers and successively applied to
extract more complex features deeper in the network, as shown in Figure 2.5.

2D CNNs have been tremendously useful for predictions on images. On the other
hand, there are real-world applications were the data has a 3-dimensional shape.
For example, a video consisting of several images can be stacked together, resulting
in a 3D volume.
In order to extract 3D features, the operations of CNN can be extended to a third
dimension. Intuitively, the input and output feature maps, as well as the kernel have
a cuboid shape. For the convolution, the kernel is moved over the input on the x, y
and z axis, producing a 3D feature map, as shown in Figure 2.6.

2.2.2. CNN Architectures

The learning ability of 2D CNNs improved significantly over the years with the
development of advanced architectures [30]. Meanwhile, successful 3D CNNs mostly
emerged from 2D architectures. ResNet, ResNext and EfficientNet are originally
2D CNNs for image classification [16, 31, 27]. The I3D architecture was built action
recognition but influenced by the 2D Inception-V1 architecture [24, 32].

ResNet & ResNeXt

The number of features a CNN can learn can be increased with the number of
layers of the network. However, when adding too many convolutional layers, the
performance will decrease eventually. One problem is, that the gradients of the error
function, with respect to the weights, get too small. This hinders the optimizers
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Figure 2.7.: Bottleneck blocks of (a) ResNet and (b) ResNeXt. Batch normalization
and ReLU activation function are not shown.

ability to adjust the weights and train the layers. This effect is called vanishing
gradient problem [16, 21].
However, a deep neural network should be equally as powerful as its shallower
counterpart. When the additional layers are mapping the identity function and the
earlier layers are copied, the deeper network would have an equal performance.
The ResNet architecture solves this by construction [16]. ResNet has "shortcut
connections" between the layers, which add the identity function on the output of
the stacked layers, as shown in Figure 2.7. The layers can learn to adjust the identity
function when it is beneficial.

The ResNet architecture makes it possible to train CNNs with thousands of layers,
while still improving in performance. This concept led to many evolved architectures,
such as Wide ResNet [33], Inception-ResNet [34], or ResNeXt [31]. The ResNeXt
architecture is largely similar to ResNet but has a different topology of the building
blocks, as shown in Figure 2.7.
ResNeXt exploits the "split-transform-merge" strategy. The input of the building
block is divided into several convolution paths and merged afterwards. The authors
call the number of paths "cardinality", which is an additional hyper-parameter.
Cardinality controls the number of transformations and is able to improve the
classification performance.

EfficientNet

A technique to improve the performance of a CNN is to scale up the size. A CNN can
be scaled up in depth, which means more convolutional layers are added. Another
option is to increase the width of the network, which results in more feature maps at
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2.2. Convolutional Neural Networks

each layer. Lastly, the resolution of the input image can be increased to capture finer
details.
However, the process of scaling up an architecture was never well understood [27].
The parameters were often arbitrarily found or selected due to resource constraints.

The EfficientNet architecture introduced a systematic way to scale up CNNs, called
"compound scaling" [27]. The concept is to uniformly scale up width, depth and
resolution of the network, because the three parameters largely affect each other.
Each dimension is scaled up by a parameter φ.

depth = αφ, width = βφ, resolution = γφ, s.t. α ·βφ ·γφ ≈ 2 (2.12)

where α,β,γ ≥ 1. The coefficients α,β,γ are determined with grid-search on a smaller
model. The model can be scaled up, with respect to Equation 2.12, when more
recourse’s are available.

The EfficientNet architecture uses the mobile inverted block as main building block,
first introduced in the MobileNetV2 architecture [35], together with squeeze and
extraction optimization [36]. The EficientNet has less parameters in comparison to
ResNet and ResNext, while achieving better results on large benchmark data sets,
like ImageNet [15].

Inflated 3D (I3D)

The Inflated 3D ConvNet architecture, or I3D, was introduced as a action recognition
model for videos. The original architecture consists of two separate 3D CNNs, which
are trained on the RBG videos and the precomputed optical flow of each sample.
Therefore, the I3D has a "two-stream" architecture. The predictions of the CNNs are
averaged.
2D CNN architectures, like ResNet, have often been adapted for video classification
[37]. The backbone of I3D uses the Inception-V1 architecture, but "inflates" the
pooling kernels and the filters to a 3D shape, as shown in Figure 2.8.

The Inception module has a similar split-transform-merge strategy, which later
inspired the design of ResNeXt [31].
Furthermore, the authors propose a method to bootstrap the weights of 2D pre-
trained models. The N×N pre-trained filters can be repeated N times for the times
dimension of the video. The weights are re-scaled by dividing by N, to ensure the
same response. This enables the I3D model to be pre-trained on large image data
sets, e.g. ImageNet.
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Figure 2.8.: The inflated Inception-V1 sub-module (from [24]).

2.3. Visualization Explanation

Deep Neural Networks are referred to as black box models, due to their lack of trans-
parency [38]. The complex multi-layer structure makes the prediction untraceable
for humans. There are several methods for CNNs to produce "visual explanations"
of the decision-making. In this section, Grad-CAM and Guided Grad-CAM are
introduced [28].

Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM), is a method that pro-
duces coarse localization maps. The maps show class specific activation and highlight
regions that are important for the classification.

Grad-Cam utilizes the feature map activation’s Ak
∈Ru×v of width u and height v, of

a selected convolutional layer. The idea is to visualize the neurons of the feature map
k ∈ {1, ..,K}, which have an impact on the prediction score yc of a class c. Therefore,
Grad-CAM calculates the gradient of yc with respect to the activation Ak of a feature
map k. The gradients are global-average-pooled over the width u and height v of the
map.

αc
k =

1
u ·v

u∑
i=1

v∑
j=1︸       ︷︷       ︸

global average pooling

∂yc

∂Ak
i j

(2.13)

The computed value αc
k is the weight (or importance) of a feature map k for the

target class c. Finally, the activation map Lc
Grad-CAM is generated, by a weighted

combination of Ak.

Lc
Grad-CAM = ReLU

 K∑
k=1

αc
kAk

 ∈Ru×v (2.14)
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Figure 2.9.: Overview of Grad-CAM and Guided Grad-CAM, adapted from [28].
The CNN classifies an image (e.g. tiger cat). Grad-Cam back-propgates
to the selected layer and combines the weighted feature maps to an
activation map. Guided Back propagation can be fused, to generate
Guided Grad-CAM.

The ReLU function is applied to only account for features, which have a positive
influence on the prediction of the target class c.
The activation maps are usually generated in the last convolutional layer, then
resized and visualized as a heat-map, as shown in Figure 2.9 The authors state, that
the last convolutional layer of a CNN offers the best compromise between detailed
spatial information and high-level semantics [28].

Guided Grad-CAM

The Grad-CAM method generates activation maps with the same size of the feature
map. As a result, only important regions are visualized instead of fine-grained details
of the image. The authors additionally introduced Guided Grad-CAM, which is a
combination of Grad-CAM and Guided Backpropagation.
Guided Backpropagation is a method that propagates backwards in the network and
visualizes the gradients with respect to the input images [39]. When backpropagating
through ReLU layers of the CNN, the method suppresses negative gradients because
the goal is to visualize pixels that have an activating effect on the neuron, rather than
pixels that suppress the activation.
Guided Grad-CAM fuses the output of Grad-CAM and Guided Backpropagation
with element-wise matrix multiplication, as shown in Figure 2.9.
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3. Methods

One of the key aspects of this thesis is the utilization of a large data set. The following
chapter describes the annotation and preprocessing of the CT scans. Furthermore,
the specific implementation is presented.

3.1. CT Images

Initially, the BG Unfallklinik Tübingen provided 222 patients for this project that
were classified according to the Letournel system. The additional data set comes
from 10 health institutions across Germany.
Medical images like CT Scans are stored as DICOM files. The files include infor-
mation about the series and the patient. Private tags, including the patients names,
needed to be removed, in order to be legally submitted by the hospitals. In [20],
an anonymization script was developed to allow hospitals to safely submit their
data. Nevertheless, some hospitals anonymized the data themselves which led to
disordered folder structures. Moreover, the submitted files came in a variety of
formats and with different compression techniques of the CT scans.

First of all, the raw data was sorted and converted into a uniform format. A raw CT
scan of a patient is stored in a dedicated folder. Each patient folder consists of several
sub-folders, which contain a series of images. Often this structure was damaged
and I sorted the scans with a script. The script reads all the images in the folder
structure and sorts them according to the remaining meta data. Additionally, the
script decompresses the images and sorts them in the correct order of the slices. This
was necessary in some occasions. After assigning each patient a unique identification
number, the data set was ready to be classified.

Annotation

The annotation was conducted by PD Dr. med. Markus Küper from the department
of pelvis and acetabulum surgery in the BG Unfallklinik Tübingen. The medical
record of the additional data was not available. As a result, CT scans of 1051 patients
needed a diagnosis.
To increase the efficiency of this process, I created a macro for the open-source
software ImageJ [40]. Instead of manually selecting each image series for every
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Figure 3.1.: ImageJ for the acetabulum diagnosis. A DICOM viewer displays a image
series (left) and small GUI (right) enables the user to switch between the
planes.

patient in the large folder structure, the macro enables the user to load the patients
data with a single command. When executed, a DICOM viewer displays the first
series of the patient as shown in Figure 3.1. Furthermore, a small GUI allows the
user to select the desired image series of the patient. When a series is loaded, the
pixel intensity is automatically re-scaled for the viewer. After the diagnosis, the user
can write the fracture class into an Excel-sheet and continue with the next patient,
simply by changing the ID in the command.

3.2. Preprocessing

Prepossessing is a crucial step to filter the data and to ensure the model learns the
correct features of an image. Moreover, a high resolution of the CT scan is essential
to detect small patterns like fractures. When training CNNs with large 3D images,
the computation is extremely demanding. However, only the region around the
acetabulum is relevant when classifying the fractures.
Daniel Dehncke solved both problems by developing a prepossessing pipeline.
Several scripts evaluate and select useful CT. The important region around the
acetabulum is automatically extracted, to reduce the size of the scans while main-
taining the available resolution.
In this thesis, I applied the scripts on the large data set but interchanged the extraction
step with the combination step, as shown in Figure 3.2. This was necessary, in order
to process over 800 GB from 1.3 million images in smaller batches. I created a new
combination script in order to fuse the batches to a large data set.
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1. Examine 2. Select

3. Extract
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4. Combine

Figure 3.2.: Preprocessing pipeline. First, the images are examined and corresponding
information saved. Secondly, a image series is selected for each patient.
In the third step, a script extracts the actabulum from the patient’s scan.
Finally, the extracted images are combined with their fracture labels.

(a) (b)

Figure 3.3.: CT scans with artefacts. (a) Patient with artificial hip joints on both sides.
(b) Patient with internal fixation for the bone fragments.

1. Examine

In the first step, a script examines each image series in the folder structure. Attributes
like the number of images, slice thickness, body part, plane, resolution and outliers
are saved into a csv-file. The plane of an image series represents the axis of the scan.
Outliers are instances either having a different plane compared to the majority of the
image series, or images which have artefacts. Especially metal from internal fixation
or artificial hip-joints produce large artefacts, as shown in Figure 3.3.
The model performance could suffer from learning wrong features. In [20], an
Isolation Forest was trained on the brightness distribution of correct images, to detect
such artefacts and mark them as outliers. Nevertheless, images without artefacts
were often marked as outliers. As a result, I had to inspected all the axial scans
manually to check the results of the script. A majority of the CT scans showed more
than the hip of the patient. Subsequently, I extracted the hip manually for several of
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1. Original 2. Threshold 3. Erosion & dilation 4. Coherent area 5. Convex hull 6. Hull on original

Figure 3.4.: Visualization of the extraction script. The scan is cut in half. A threshold
is applied. The script marks pixels with erosion and dilation, which
approximately cover the bone. The biggest area is kept and a convex hull
generated. The script then masks the original slice with the hull.

the patients. Scans of a single hip were sorted out, because the processing pipeline
was not adjusted for it. I repeated the examination step until the usable data was
filtered.

2. Select

In the second step, a script selects an image series of a patient according to several
constraints. First of all, the CT scan has been taken from the axial plane and shows
the hip. Secondly, the image series contains at least 40 slices and the slice thickness
does not exceed 3mm. Finally, for each patient the script selects the image series that
has the closest thickness to 3mm with the lowest outliers/total-image-number ratio.

3. Extract

In the following step, an extraction script selects 60 evenly spaced slices of the
selected image series. If a CT scan of a patient consists of less than 60 images, every
image is retained. Acetabulum fractures mostly occur on one side of the patient.
The image series is split in half to double the number of samples and to collect
non-fracture instances. The script mirrors the right image so that the model only
predicts samples which display the left side.

The halves are further reduced by extracting the region around the acetabulum as
shown in Figure 3.4. This is done by converting the images into the Hounsfield scale.
An intensity threshold of 30 is applied and the regions most likely to show bones
are marked with erosion and dilation. Other incoherent structures are removed,
resulting in an approximate segmentation of the bone. The script generates a convex
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Figure 3.5.: Composition of the data set. For this study, the data set was provided by
11 hospitals. After the preprossessing, 991 out of 1273 patients remained.

hull which covers the segmented region. Finally the script creates 3D cuboid with a
fixed aspect ratio for all the halves. The cuboid covers the convex hulls and is used
to extract the hip joint from the original image series.
After the acetabulum is extracted, the script saves the resulting volume as a NIfTI
file. In contrast to DICOM, NIfTI allows to store a 3D image in a single file instead
saving each slice independently.
I inspected the extracted halves of every patient, to ensure a correct extraction.
For approximately 10% of the patients, I had to adjust the cuboid and repeat the
extraction. This could mostly be resolved by changing the cutting point or by
increasing the threshold. In rare occasions, I framed the cuboid manually.

4. Combine

In the last step, the extracted halves are combined with the class labels, resulting
in a single data set. Up to this point, the patients of each health institution were
preprocessed in a batch due to the large data size. A script reads all the extracted
halves and the class labels for each health institution. Extracted images are sorted
out, if a diagnosis was not possible by the examiner. I removed patients if the
examiner made remarks that the fracture already healed or the scans were made after
surgical intervention. Additionally, I removed some patients with other remarks
about severe damages in the acetabulum region (e.g. fractured ilium wing, fractured
pubic branch, cancerous pelvis), which might hinder the model to learn features of
healthy non-fractured pelvises or Letournel classes.
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Figure 3.6.: Intensity histograms of an extracted halve (left) and the normalized
counterpart (right). The interval Imax with the largest area under the
curve, is highlighted. The scan is normalized with the mean and standard
deviation of Imax.

The raw data set, including the patients from the BG Unfallklinik Tübingen, consisted
out of 1273 patients. After the preprocessing, 991 (77.8%) patients remained, resulting
in 1982 samples, as shown in Figure 3.5.
Finally, the script randomly splits the data for cross-validation, training and testing.

Intensity Normalization

Normalization is an essential step which re-scales the intensity of an image to an
equal distribution. In this study, the images were generated with various CT scanners
from different hospitals. Normalizing the whole data with the global mean and
standard deviation removed the texture in many scans. Furthermore, each image has
different characteristics. Some images show large portions of air and others come
with artefacts (e.g. metal). As a result, the local mean and standard deviation were
fluctuating and unreliable as a measure of central tendency and dispersion.
I created an normalization algorithm that takes the intensity of a voxel vi and re-scales
it to v′i . First, the histogram of the input volume is generated, as shown in Figure
3.6. The algorithm records all the intensity intervals I j, which continuously exceed
1% of the voxels. For each interval I j, the algorithm calculates the area under the
histogram. The interval Imax with the largest area, approximately covers the voxels
showing the patients tissue. The mean µ̂Imax and standard deviation σ̂Imax of Imax are
calculated and used to normalize the voxel intensity vi of the extracted CT scan.

v′i =
vi− µ̂Imax

σ̂Imax

(3.1)
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Figure 3.7.: 3D ResNet-50 and ResNeXt-50 architecture [37]. The bottleneck blocks
are similar as shown in Figure 3.7 but inflated by one dimension. ResNeXt
uses multiple convolution paths in the bottleneck blocks. Batch normal-
ization and activation functions are not shown.

3.3. Implementation

ResNet & ResNeXt

Convolutional Neural Networks for 3D medical images can be adapted from video
classification models [41]. Similar to MRIs or CT scans, a video consist out of multiple
frames which can be stacked together, resulting in a 3-dimensional volume. In this
thesis, I used a 3D ResNet and ResNext for video classification [37]1. The backbone
of the ResNet-50 and ResNeXt-50 is shown in Figure 3.7.
The architecture remains unchanged to the original ResNet and ResNeXt architecture
but the operations are extended by one dimension. However, the stride in the first
convolution is set to one for the depth dimension. Stride controls with how many
units the kernels moves over the input feature map at each step. GAP is applied on
the feature maps of the last convolutional layer. A linear layer is connected with
nodes that output the predicted probabilities of each class.

EfficietnNet

Secondly, I implemented a 3D EfficientNet2 model for Pytorch. The backbone of the is
shown in Figure 3.8. The implementation uses a stride of one in the first convolution
for the depth of the input volume. Nevertheless, the remaining topology of the
operations is equal to the original 2D EfficientNet but extended by one dimension.
EfficientNet uses the mobile inverted block (MBConv) as main building block, from
the the MobileNetV2 architecture [35] and MnasNet architecture [42], together with
squeeze and extraction optimization [36]. The EfficientNet architecture has GAP
after the last convolution with dropout and a linear layer for the classification.

1https://github.com/kenshohara/3D-ResNets-PyTorch
2https://github.com/shijianjian/EfficientNet-PyTorch-3D
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Figure 3.8.: The 3D EfficientNet architecture. The implementation extends the mobile
inverted blocks (MBConv) by one dimension. Batch normalization and
activation functions are not shown.

Inflated 3D (i3D)

Lastly, I implemented an I3D model for Pytorch. The repository3 is based on the
original Tensorflow implementation and offers pre-trained models from the Ima-
geNet and Charades data set [39, 43]. The original I3D model uses two CNNs for
the RBG videos and their corresponding optical flow snippets. In this thesis, I only
used one CNN that was modified to receive a single channel input. Furthermore, I
removed the last pooling layer and added GAP followed by a linear layer, as shown
in Figure 3.9. The nodes of the last linear layer return the scores of each class.
The I3D model does not only inflate the operations of the Inception-V1 architecture
but optimizes the feature extraction for videos. In the first two pooling layers, the
models does not perform Max-Pooling on the frames of the video (by using a 1×3×3
kernel). As a result, the receptive field is adapted to extract more features in the
height and width dimension of the input.

M3d-CAM

M3d-CAM is a library for generating activation maps in Pytorch and was specifically
designed for Deep Learning with medical images [44]. The library offers various
methods like Guided Backpropagation, Grad-CAM, and Guided Grad-CAM to
visualize the prediction in 2D and 3D CNNs. The library also includes Grad-CAM++,
which was not working reliably for 3D models. In this thesis, I only only use Grad-
CAM and Guided Grad-CAM.
Generally, M3d-CAM allows an uncomplicated integration and only needs a single
line of code to "inject" the model with the desired activation map. Next time the
model receives an image, the activation map is automatically generated.

3https://github.com/piergiaj/pytorch-i3d
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Figure 3.9.: The I3D architecture used in this thesis (adapted from [24]). The last
pooling layer is interchanged with GAP and a linear layer. The inflated
Inception block (Inc.) was previously introduced in Figure 2.8. Batch
normalization and activation functions are not shown.

The output of methods like Grad-CAM have a low resolution. Therefore, my code
resizes the attention maps with bicubic interpolation to the original input size.

Training Center for Machine Learning

Graphics Processing Units (GPUs) are commonly used in Deep Learning frameworks
to accelerate the computational expensive training of CNNs.
The Training Center for Machine Learning (TCML) in Tübingen offers a large
GPU cluster for scientific research and education. The cluster consists out of 40
computation nodes, each node providing a Intel XEON CPU E5-2650 v4 and four
NVIDIA GeForce GTX 1080 Ti. The TCML Cluster uses the container virtualization
software Singularity [45], which was developed for scientific computing on clusters.
A singularity container is any Linux environment condensed to a file, which can
be used to execute a program on the cluster. The user can customize the operating
system, the environment and libraries while being independent of the server it is
running on. This enables a high flexibility of the implementation and reassures the
reproducibility of the results.
In this thesis, I used a container with Ubuntu 16.04, Pytorch 1.6.0 [46], and CUDA
9.0 [47]. The container executes the code with a Python 3.7 environment, including
libraries like imgaug 0.4.0 [48] for data augmentation and medcam 0.1.6 [44] for
generating attention maps.
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4. Results

This chapter contains the results on the large cohort of CT scans. In the first two
experiments, the models are trained to detect fractures and to classify the three
treatment classes. In the last experiment, the models learn to distinguish between all
10 Letournel classes.

4.1. Fracture Detection

The data set for the fracture detection is relatively large, consisting of 997 extracted
halves with an acetabulum fracture and 985 halves showing no fracture. The small
imbalance comes from 16 patients with fractures on both sides and 10 patients
without any fracture.
I split the data set into an 80% training set and a 20% test set. I performed 5-fold
Cross Validation (CV) on the training set, to compare several architectures and to
optimize corresponding hyper-parameters. The training/test split and CV splits are
stratified and approximately evenly distributed across of the Letournel types and
the hospitals.
The fracture detection is a binary classification with balanced classes which permits
to use accuracy, sensitivity and specificity as performance measures.
Initially, I evaluated the architectures with standard hyper-parameters to acquire
their baseline performance. I compared EfficientNet-b3, ResNet-50, ResNeXt-50, and
I3D. Afterwards, I selected the architecture with the highest accuracy. This was done,
due to the limited time of this thesis.
The models were trained with cross-entropy loss and a SGD optimizer with a learning
rate of 0.001 and momentum of 0.9. I chose a batch size of four, to train all models on
a single GPU without running out of memory. The ResNeXt model has a cardinality
of 16 because of memory constraints. No weight decay or data augmentation were
used. An exponential scheduler decreases the previous learning rate by one percent
at every epoch. The weights were randomly initialized. The results are shown in
Figure 4.1.

The EfficientNet architecture achieved the lowest mean accuracy of 83.7%. ResNet
and ResNeXt achieved an accuracy of 87.5% and 85.9%, respectively. Even though
the results are similar, it is notable that ResNeXt could not outperform ResNet.
Under the given circumstances, the I3D model reaches the highest accuracy of 91.9%.
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Figure 4.1.: Average validation accuracy over 300 epoch of I3D, ResNet-50, ResNeXt-
50 and I3D. The shaded bands show the standard deviation of the CV
splits.

Therefore, I selected the I3D architecture for the fracture detection model.

Hereinafter, I compared the influence of several parameters before evaluating the
I3D model on the final test set. Only a single parameter is changed at each step and
the model evaluated with cross-validation on the training set.
First of all, I trained the I3D model with the same setup as before but examined the
influence of other learning rates as shown in Table 4.1.

Table 4.1.: The validation results at epoch 300 of cross-validation when training I3D
with different learning rates.

Accuracy [%] Specificity [%] Sensitivity [%]
lr 0.01 90.6 ± 2.2 92.9 ± 3.0 88.4 ± 2.6
lr 0.001 91.9 ± 1.3 93.8 ± 1.2 90.0 ± 2.0
lr 0.0001 89.9 ± 1.0 93.6 ± 1.8 86.4 ± 1.9

A learning rate of 0.001 achieved the best accuracy with 91.9% in average. However,
when training with lower or higher learning rates, the I3D model still performed well
with an accuracy around 90%. It indicates that the architecture is relatively robust,
as long as the learning rate is in an appropriate range. Henceforth, the learning rate
of 0.001 was used for the fracture detection model.
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Secondly, I examined the influence of different initializations, as shown in Table 4.2.
I3D was initialized with weights from models, that were trained on ImageNet and
the Charades data set.

Table 4.2.: Average validation results at epoch 300. I3D models pre-trained on Ima-
geNet and the Charades data set are compared with random initialization.

Accuracy [%] Specificity [%] Sensitivity [%]
ImageNet 89.6 ± 2.2 94.1 ± 2.2 85.3 ± 3.9
Charades 90.0 ± 1.8 92.3 ± 2.6 87.7 ± 2.0
Random Initialization 91.9 ± 1.3 93.8 ± 1.2 90.0 ± 2.0

The models with transfer learning cannot outperform the I3D model with randomly
initialized weights. It is notable, that pre-training actually has a negative effect and
the validation accuracy decreases. Although the I3D model pre-trained on ImageNet
reaches the highest specificity with 94.1%, it has a low sensitivity of 85.3%.
Generally, the models have more difficulty with recognising fractures, hence the
sensitivity tends to be lower than the specificity. For the fracture detection model, it
is preferable to achieve relatively high results in both measurements. Therefore, I
decided to use the random initialization in further experiments.

In the next step, I evaluated three variants for data augmentation. The first variant is
vastly similar to the augmentation used in Daniel Dehncke’s thesis. Each sample is
uniformly rotated between -7 and 7 degrees. Additionally, to 50% of the samples
zoom, translation, shearing, noise, depth shift and blur is applied. The operations
are only applied to the slices of the CT scan.
The second variant uses the same operations, but applies them to any axes of the 3D
volume. For each sample, the axis is randomly selected.
The third variant is equal to the second variant, but adds random erasing. For 25%
of the samples, a cuboid erases the vovels around the ilium, femur and sacroiliac
joint. Additionally, a circular mask erases parts of the scan not showing the patients
body. Random erasing has the purpose of ensuring that the model does not rely
on features which are irrelevant for detecting acetabulum fractures. The results are
presented in Table 4.3.

Table 4.3.: Average validation results of the I3D model at epoch 300. Three proposed
augmentation variants are compared.

Accuracy [%] Specificity [%] Sensitivity [%]
No Augmentation 91.9 ± 1.3 93.8 ± 1.2 90.0 ± 2.0
1. Variant 92.8 ± 0.8 95.8 ± 1.4 89.9 ± 1.7
2. Variant 93.1 ± 1.0 95.3 ± 0.8 90.9 ± 1.8
3. Variant 93.5 ± 1.2 96.2 ± 1.5 90.9 ± 1.6
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Figure 4.2.: Validation and test accuracy of the best fracture detection model over
300 epochs. (a) Average accuracy of the training and validation splits. (b)
Accuracy of the whole training set and the final test set.

Adding data augmentation increased the accuracy by 0.9% to 1.6%. Applying the
operations on all axes, as well as erasing parts of the scan had a small but positive
influence on the performance. The best I3D model reached a high accuracy of 93.5%
on the validation splits with the third variant, as shown in Figure 4.2 (a).

Generally, the I3D model is relatively stable and certain parameters have a low
impact on the model. When using weight decay, the model’s performance did not
improve nor did the performance significantly decrease (see Table A.2). As a results,
no weight decay was used.

Finally, I trained the best model on the full training set and evaluated the performance
on the independent test set, as shown in Figure 4.2 (b). At epoch 300, it achieves an
accuracy of 93.7%, a specificity of 96.5%, and a sensitivity of 90.9%. The confusion
matrix is shown in Table 4.4.

Table 4.4.: Confusion table of the I3D model at epoch 300 on the test set.
Actual

Pr
ed

ic
te

d Fracture Non-Fracture
Fracture 180 7
Non-Fracture 18 193

An interesting issue of the fracture detection model, can be found when analyzing
the error rate for of each Letournel class independently, as shown in Figure 4.3.
Fractures on the anterior wall (2.1) have an outstandingly high error rate. In total,
they contribute 9 out of 18 false negative samples, even though they only make
about 8% of the fractured samples in the data set and each split.
Furthermore, it is notable that the associated fractures (1.3 + 3.2-3.5) have a low error
rate, even of rare Letournel classes. However, the elementary fractures (1.1-1.2 +
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Figure 4.3.: Error rate of the fracture detection model for each Letournel class.
Additionally, the error rate for the non-fractured samples is displayed at
the bottom.

2.1-3.1), which tend to be smaller, are harder for the model to detect.

Subsequently, I generated attention maps with Grad-Cam and Guided Grad-Cam
for some unbiased samples from the test set. With the attention maps, it is possible
to comprehend the decision of the model by visualizing important regions for
the predicted class. The attention maps are 3-dimensional but for purpose of
demonstration only the axial section through the acetabulum is pictured in Figure
4.4.

According to Grad-CAM and Guided Grad-CAM, when a fracture is correctly
detected, the model focuses on the region around it. When a sample is correctly
classified as non-fracture, the model does not seem to focus on a particular region.
Interestingly, the model gives attention to the the anterior wall fracture in Figure
4.4 (c) but classifies it as non-fracture. It is possible to verify whether a fracture is
falsely detected because the attention likely correlates with the location of a detected
fracture.
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Figure 4.4.: Original scan, Grad-Cam and Guided Grad-Cam of several patients at
the axial section of the acetabulum. The activation maps are generated
for the predicted class at the last convolutional layer of I3D. (a) Correctly
detected fracture at the posterior wall (1.1). (b) Correctly predicted non-
fracture. (c) Fracture at the anterior wall (2.1), incorrectly predicted as
non-fracture. (d) Non-fracture, incorrectly predicted as fracture.
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4.2. Treatment Classification

4.2. Treatment Classification

In the second experiment, the models classify the fractures according to their
operational access. The first class (17%) and second class (20%) are only accessed
posterior and anterior, respectively. The third class (63%) is predominantly accessed
anterior with a posterior combination if necessary. The distribution and Letournel
classes of the three categories for the large data set are presented in Figure 4.5.

0 50 100 150 200 250
Extracted Halves
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T-shaped (3.3)
Tranverse + Post. wall (3.2)
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Anterior/Posterior

Figure 4.5.: Distribution of the Letournel classes in the data set. The fracture types
are highlighted according to their treatment class.

For this experiment, only the 997 fractured samples were used. The samples are
divided into an 80% training set and a 20% test set. On the training set, I perform
5-fold CV for validation. The splits (incl. training and test split) are stratified and
evenly distributed across the Letournel classes and the hospitals.
Measuring the performance with accuracy when the data set is imbalanced can be
misleading. I used the weighted F1-score to evaluate the models in this experiment.
It is defined as followed:

F1(c) = 2 ·
precisionc · recallc
precisionc + recallc

weighted F1 =
1
n

∑
c

number(c) ·F1(c)
(4.1)

where F1(c) is the F1-score of class c, number(c) is the number of samples of class c,
and n is the total sample size.
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Figure 4.6.: Average weighted F1-score of the validation splits over 300 epochs. The
results of I3D, ResNet-50, ResNeXt-50 and EfficientNet-b3 are compared.

Subsequently, I compared the performance of the same four architectures, to select the
model with the highest weighted F1-score. The last linear layer of each architecture
is extended to output three values with a softmax function. The loss function was
changed to cross-entropy for multi-class problems. The SGD optimizer with the
corresponding parameters remained unchanged. No data augmentation or weight
decay was used. The results are presented in Figure 4.6.

The validation performance of EfficientNet, ResNet and ResNeXt are similar with a
weighted F1-score between 60.1% and 63.1%. Interestingly, ResNet was outperformed
by EfficientNet and ResNeXt, even though the architecture achieved better results as
a fracture detection model.
Overall, the I3D had the best baseline performance with a F1-score of 74.2%.
The I3D architecture seems to detect and generalize the fracture categories most
effectively, given the fact that I3D outperforms the other architecture by a high
margin. Consequently, I selected the I3D architecture for the treatment classification.

Moreover, I repeated the comparison of several learning rates and weight initializa-
tion. A learning rate of 0.001 achieved the best results and the random initialized
model outperformed the pre-trained models (as shown in Table B.2 and Table B.2).

On the other hand, data augmentation had a regularizing effect on the model and
lead to greater performance. With the third variant from Section 4.1, the model
achieved a mean weighted F1-score of 77.5%, as shown in Figure 4.7 (a).

The data set for the classification is relatively unbalanced. Therefore I tried a weighted
loss function and oversampling to address the problem.
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Figure 4.7.: Weighted F1-score of the best fracture classification model over 300
epochs. (a) Average results of the training and validation splits. (b)
Results of the whole training set and the independent test set.

For the weighted loss function, the weight of each class ci is computed by diving the
size of the largest class cmax by the number of samples in ci, as followed wci = |cmax|

|ci|
.

As a results, the false prediction of minority classes cause a higher loss.
With oversampling, each class has a dedicated probability, with which a correspond-
ing sample is pulled for the training. A smaller class has a higher probability than a
class with many samples. A sample can be drawn multiple times, which results in
an approximately even distribution across the classes during training.
Nevertheless, the regular model achieved the best results and is used for the final
evaluation. Oversampling and weighted loss did not have a positive influence under
given circumstances (see Table B.4).

Finally, I trained the best I3D model on the whole training set and evaluated the
performance on the test set, as shown in Figure 4.7 (b). The I3D model for the
treatment classification reaches a weighted F1-score of 84.9%, and an accuracy of
84.5%. The confusion matrix is shown in Table 4.5.

Table 4.5.: Confusion table for the treatment classification. The results of the I3D
model were obtained at epoch 300.

Actual
Class 1 Class 2 Class 3

Pr
ed

ic
te

d Class 1 30 1 3
Class 2 1 32 16
Class 3 3 7 107
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Chapter 4. Results

4.3. Letournel Classification

Finally, I studied the capabilities of the models to classify all Letournel classes.
Similar to the previous experiment in Section 4.2, the models were trained with 997
fractured samples and the same stratified splits. I evaluated the models with the
weighted F1-score.

As previously, I compared the four different architectures against each other in the
initial step. The models were extended to output the predictions for 10 classes. Other
parameters of the models and the training remain unchanged. The results are show
in Figure 4.8.
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Figure 4.8.: Average weighted F1-score of the validation splits over 300 epochs. The
results of I3D, ResNet-50, ResNeXt-50 and EfficientNet-b3 are compared.

On the validation splits, EfficientNet achieves the lowest performance with an
weighted F1-score of 31.6%, followed by ResNet and ResNeXt with 34.1% and 36.1%,
respectively. After all, I3D is the most powerful architecture and achieves a weighted
F1-score of 52.1% in average. It is notable, that I3D continuously outperformed other
the architecture by a wide margin. Consequently, I used the I3D architecture for the
Letournel classification.

Next, I tried various learning rates, initialization with pretrained models, weighted
loss, and oversampling (see Appendix C). However, I could not determine a perfor-
mance advantage or other benefits, which coincides with the results of the fracture
detection and treatment classification experiment.

48



4.3. Letournel Classification

0 100 200 300
epoch

0

20

40

60

80

100

we
ig

ht
ed

 F
1 

[%
]

100.0

56.0

(a) Letournel Classification: Validation

training
validation

0 100 200 300
epoch

99.9

57.3

(b) Letournel Classification: Test

training
test

Figure 4.9.: Weighted F1-score of the best Letournel classification model over 300
epochs. (a) Average results of the training and validation splits. (b)
Results of the whole training set and the final test set.

After all, data augmentation improved the performance of the Letournel classification.
With the third variant of Section 4.1, the I3D model achieves a mean weighted F1-
score of 56.0%, as shown in 4.9 (a). Furthermore, the model reaches a Top-1 accuracy
of 56.8% and a Top-2 accuracy of 74.9% in average.
Subsequently, I trained the I3D model on the complete training set and evaluated
the performance on the independent test set. The model reaches a weighted F1-score
of 57.3%, as shown in 4.9 (b). In addition, the model achieves a Top-1 accuracy of
58.5%, and a Top-2 accuracy 78.0% on the test set.

A good insight into the strengths and weaknesses of the Letournel model is given by
the confusion matrix in the Table 4.6.
First of all, the model seems to detect fractures in the right area but sometimes is
not able to distinguish whether the column or wall of the acetabulum is affected.
For example, the model never predicts the posterior column class (1.2) but classifies
all the affected samples as posterior wall fractures (1.1). Furthermore, the model
cannot differentiate in some instances between an anterior wall fracture (2.1) and an
anterior column fracture (2.2).
Another interesting pattern can be observed for the T-shaped fractures (3.3), anterior
column + posterior hemi-traverse fractures (3.4) and the two-column fractures (3.5).
The model can detect that both column of the acetabulum are affected but is not able
to generalize the fracture lines of each class. This leads to some miss-classifications
between the mentioned Letournel types.
Due to the similarity of the classes, it is worth noticing, that five samples with
a anterior column fracture (2.2) are classified as an anterior column + posterior
hemi-traverse fracture (3.4).
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Chapter 4. Results

Table 4.6.: Confusion table for the Letournel classification. The results of the I3D
model were obtained at epoch 300.

Actual
Class 1 Class 2 Class 3

1.1 1.2 1.3 2.1 2.2 3.1 3.2 3.3 3.4 3.5
Pr

ed
ic

te
d

Class 1
1.1 21 4 1 0 0 0 1 0 0 0
1.2 0 0 0 0 0 0 0 0 0 0
1.3 1 0 2 0 0 0 2 0 0 0

Class 2
2.1 1 0 1 12 4 3 0 1 1 1
2.2 0 0 0 3 12 0 1 1 2 2

Class 3

3.1 1 0 0 1 0 2 1 0 1 0
3.2 2 0 0 0 1 0 6 0 0 0
3.3 0 0 0 0 0 2 0 5 5 1
3.4 0 0 0 0 5 2 0 4 20 8
3.5 0 0 0 0 2 0 0 0 17 37

The Letournel model slightly outperforms the treatment classification model from
Section 4.2, which achieved a weighted F1 score of 84.9%. When the true labels and
predicted labels are converted into the three treatment classes, the Letournel model
achieves a weighted F1-score of 85.7% and an accuracy of 85.5% at epoch 300 on the
test set.
Although the improvement is small, it shows two characteristics. Firstly, the Letournel
model may falsely classify the Letournel class but the treatment would often not
change. Secondly, a separate CNN specifically trained for the treatment, is not able
to achieve a superior performance compared to the Letournel model. The confusion
table of the Letournel model for the treatment classes is shown in Table 4.7.

Table 4.7.: Confusion table of the Letournel model for the treatment classes. For
comparison, the results of the treatment classification model are beside in
brackets

Actual
Class 2 Class 1 Class 3

Pr
ed

ic
te

d Class 1 29 (30) 0 (1) 3 (3)
Class 2 2 (1) 31 (32) 12 (16)
Class 3 3 (3) 9 (7) 111 (107)

The classification of a fractured sample needs about 0.3 seconds in average. The
performance of the Letournel model in comparison to human observers is shown in
Table 4.8. In the literature, senior and junior residents achieve an accuracy between
30% and 55%. The I3D model can slightly outperform inexperienced physicians but
remains inferior to experts and fellows.
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4.3. Letournel Classification

Table 4.8.: Diagnostic accuracy of the Letournel classification in the literature. The
studies grouped the participants according to their experience.

Study
Sample

size CT scan Group
Diagnostic

accuracy [%]
Time per

fracture [min]

Riouallon et al. [49] 35 2D + 3D
multiplanar

Expert 88.6 1.4

Fellow 74.0 2.0

Senior 50.1 2.2

Junior 42.0 2.4

Boudissa et al. [50] 23 2D + 3D Junior 52.0 < 2.0

Garrett et al. [51] 20 2D
Senior 42.4 -

Junior 36.3 -

Hüfner et al. [8] 10 2D

Expert 76 -

Senior 55 -

Junior 30 -

Present study 200 2D - 58.5 < 0.01
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5. Discussion

In this thesis, models for acetabulum fractures were further developed and trained
on a large data set. A pre-processing pipeline was used to process the enormous
amount of data and extract the hip-joint in the CT scans. I compared a variety of
3D CNN architectures to evaluate their applicability for CT scans. I reevaluated the
results of the fracture detection model as well as the treatment classification model.
Afterwards, I created a model to distinguish between all Letournel fracture types.

The best fracture detection model achieved a high accuracy of 93.7% on an inde-
pendent test set. Further development of the 3D CNN and a larger data set could
improve the accuracy of 82.8% in the previous thesis [20]. The model had the most
difficulties to detect anterior wall fractures. The fractures are often fissures in the
acetabulum which might have been too small for the model to detect.
Generally, the activation maps of the fracture detection is conclusive. The model
generates activation in a detected fracture region. This is useful when a human
observer wants to understand or verify the prediction of the model. However,
Grad-CAM is a heuristic technique and does not give a definite explanation of the
decision.

The Letournel model achieved a weighted F1-score of 57.3% and an accuracy of 58.5%.
To my knowledge, it is the first reported result concerning the automatic classification
of Letournel fractures. When comparing with human observers in literature, the
model outperforms medical professionals with little experience, while being much
faster. Junior and senior residents achieve an accuracy between 30% and 55% with
2D reconstruction [8, 51, 49]. The model can not compete with experts which achieve
an accuracy between 76% and 88% in the same studies. It was repeatedly shown
that physicians reach higher rates with 3D reconstruction and segmentation without
the femoral head. Consequently, junior and senior fellows achieve rates between
52.5% and 64% [8, 51]. In general, it is difficult to compare the performance, given
the different data and approaches of the studies. Nevertheless, when only the 2D
scans of the axial plane is given, the Letournel model is able to support the diagnosis
of novice examiners.
The Top-2 accuracy of 78.0% of indicates, that the correct fracture often achieves a
high score in the softmax distribution. Consequently, the model can offer further
value for the diagnosis, if the estimated likelihoods of the fractures are considered.
In summary, the Letournel model has weaknesses. It detects the fractures at the
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correct region but can’t distinguish between the wall and column of the acetabulum.
Moreover, the model misclassifies similar fracture patterns. False predictions often
occur for the fracture types "T-shaped", "anterior column + posterior hemi-traverse",
and "two-column". These fractures also tend to be challenging to distinguish for
human observers [4]. The individual performance of smaller classes is hard to
evaluate. For example, there test set only has four posterior column fractures, that
were never predicted by the model. The ability to generalize the fractures should
evaluated again, if more data of rare Letournel types is available.
Furthermore, the Letournel model classifies the fractures with a weighted F1-score
of 85.7% according to their surgical access. The treatment classification model, specif-
ically trained for the task, achieves weighted F1-score of 84.9%. A separate model for
the surgical access does not show a benefit and might be obsolete in practice. Having
more information about the fracture during training might lead to the a superior
performance of the Letournel model. After all, the classification of the surgical access
greatly improved in comparison to the previously ascertained F1-score of 63.3% (in
[20]).

The results of three experiments were similar. When comparing different architectures,
the I3D architecture repeatably outperformed ResNet, ResNeXt and EfficientNet.
The original I3D model was trained with videos that have 64 frames. In contrast to
the other architectures, I3D does not use symmetric kernels for the the first pooling
layers. The receptive field is adapted to extract more features in the slices of the
volume. This might have been beneficial for the feature extraction of the CT scans.
The batch size of four is small in relation to the training set. The parameters are
updated more often in each epoch. Subsequently, the model has to do smaller update
steps, which explains why a small learning rate of 0.001 achieved the best results.
The learning rate should be adjusted, when more GPU memory is available and
training with larges batches is possible.
Pre-training on natural images and videos did not improve the performance of I3D.
The features of the fractures might been substantially different compared to patterns
on natural footage. Ultimately, training from scratch led to better performance.
Heavy data augmentation improved the performance in every experiment by a small
amount. The reason could be the usage of GAP, which sums out spatial information
before the last linear layer and already acts as a structural regularizer [26].
However, the tuning has certain limitations. First of all, only a singly parameter was
changed at each step. A grid search with the parameters would offer more insight
into their relation. Secondly, only the I3D architecture was tuned and evaluated on
the test set. In order to make a fair comparison, the hyper-parameter tuning should
be conducted for every architecture.
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Conclusion & Outlook

The correct classification of acetabulum fractures remains a challenging problem.
Adequate expertise and spatial perception are crucial in order to make a sufficiently
accurate diagnosis. The application of 3D Concolutional Neural Networks for the
analysis of CT scans can be substantially beneficial. The large data set and a more
advanced architecture further improved the diagnostic performance of the proposed
computer-aided approach. The models offer a fast and fairly accurate method to
detect acetabulum fractures and to classify their surgical access. Given enough data,
the models can distinguish between all Letournel types and are able to assist doctors
with little experience.

Nevertheless, the consolation of experts remains essential, because the diagnosis is
not yet reliable. However, the approach has room for future improvement.
There is little research concerning 3D CNNs for medical data. The I3D model led
to great results but was designed for videos. It would be interesting to construct
a CNN that is specifically designed for the analysis of CT scans. Natural videos
and CT scans are vastly different. A customized architecture might be important for
further development.
Moreover, the models only predicted the fractures based on 60 axial slices. For
physicians, the coronal and sagittal reconstruction can make the decisive difference
for the correct decision [52, 8]. Therefore, additional planes might be crucial for a
dependable classification of model. An interesting approach would be to train three
separate CNNs for each plane and combine the classification scores to a single output.
This would be similar to the original "two-stream" architecture of I3D. Another
option is the training with more axial slices to achieve a higher resolution of the 3D
volume. It could improve the detection of smaller fractures but requires a GPU with
more memory.
A limitation of this thesis lies in the supervised task itself. First of all, the fractures
were classified by a single expert for acetabulum surgery. The models are not trained
with the true fracture labels because the medical records are regulated by privacy
law. In the future, more experts should analyse the CT images in order to discuss the
most suitable diagnosis.
Secondly, the model just predicts a class labels but is not able to detect corner cases
or transitional forms, which can occur for Letournel fractures [8]. Physicians are
responsible for the individual treatment planning, even if the model achieves a high
performance in the course of time.

In the future, it is planned to implement the models into the back end of a website.
Hospitals without a specialist can upload the data and receive the results of the
model for a second opinion. A CT viewer could visualize the extracted acetabulum
and the coarse activation maps of Grad-CAM. By receiving more data, the service
could be continuously improved.
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A. Appendix: Fracture Detection

Table A.1.: Averaged validation accuracy, sensitivity and specificity from various
architectures. The results were observed at epoch 300.

Accuracy [%] Specificity [%] Sensitivity [%]
EfficientNet-b3 83.7 ± 1.8 89.3 ± 2.9 78.3 ± 4.6
ResNeXt-50 85.9 ± 1.8 86.4 ± 4.8 85.4 ± 2.4
ResNet-50 87.5 ± 1.7 89.0 ± 4.6 86.1 ± 1.8
I3D 91.9 ± 1.3 93.8 ± 1.2 90.0 ± 2.0

Table A.2.: Average validation results of the I3D model with several values for weight
decay. Data augmentation was used

Weight decay Accuracy [%] Specificity [%] Sensitivity [%]
10−3 93.2 ± 1.4 96.2 ± 1.2 90.3 ± 2.2
10−4 93.0 ± 1.6 95.4 ± 1.6 90.6 ± 2.4
10−5 93.3 ± 1.4 96.0 ± 2.1 90.6 ± 1.6
10−6 93.2 ± 1.3 96.6 ± 1.1 89.9 ± 1.9
0 93.5 ± 1.2 96.2 ± 1.5 90.9 ± 1.6
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B. Appendix: Treatment Classification

Table B.1.: Average results of the validation splits at epoch 300. The weighted F1-
score and accuracy of I3D, ResNet-50, ResNeXt-50 and EfficientNet-b3
are recorded along with the standard deviation across the CV splits. No
data augmentation was used.

weighted F1 [%] Accuracy [%]
EfficientNet-b3 61.3 ± 2.5 62.7 ± 3.0
ResNeXt-50 63.4 ± 1.3 63.2 ± 1.4
ResNet-50 60.1 ± 2.8 58.6 ± 3.9
I3D 74.2 ± 1.6 73.7 ± 1.8

Table B.2.: Comparison of different learning rate for the I3D model. The weighted
F1-score and accuracy of the validation splits are averaged at epoch 300.
No data augmentation was used.

weighted F1 [%] Accuracy [%]
lr 0.01 70.2 ± 0.6 70.1 ± 1.0
lr 0.001 74.2 ± 1.6 73.7 ± 1.8
lr 0.0001 71.9 ± 2.5 70.7 ± 2.5

Table B.3.: Comparison of the I3D performance, when the model is initialized with
pre-trained weights. The weighted F1-score and accuracy of the validation
splits are averaged at epoch 300. No data augmentation was used.

weighted F1 [%] Accuracy [%]
ImageNet 73.6 ± 2.2 73.3 ± 2.4
Charades 73.3 ± 1.5 72.5 ± 1.5
Random Initialization 74.2 ± 1.6 73.7 ± 1.8
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Table B.4.: Comparison of weighted loss and oversampling to the regular I3D model.
The weighted F1-score and accuracy of the validation splits are averaged
at epoch 300. Data augmentation was used.

weighted F1 [%] Accuracy [%]
weighted loss 76.6 ± 3.1 76.4 ± 3.1
oversampling 76.3 ± 3.4 76.9 ± 3.3
regular 77.5 ± 2.7 77.4 ± 2.8
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C. Appendix: Letournel Classification

Table C.1.: Average results of the validation splits at epoch 300. The weighted F1-
score and accuracy of I3D, ResNet-50, ResNeXt-50 and EfficientNet-b3
are recorded along with the standard deviation across the CV splits. No
data augmentation was used.

weighted F1 [%] Top-1 Accuracy [%] Top-2 Accuracy [%]
EfficientNet-b3 31.6 ± 2.6 31.7 ± 3.1 52.8 ± 2.8
ResNeXt-50 36.1 ± 4.7 37.9 ± 4.2 56.7 ± 3.9
ResNet-50 34.1 ± 3.1 34.5 ± 3.8 55.2 ± 5.6
I3D 52.1 ± 3.5 53.2 ± 3.3 74.4 ± 2.5

Table C.2.: Average results of the validation splits at epoch 300. Comparison of
several learning rate (lr) of the I3D model for the Letournel classification.
No data augmentation was used.

weighted F1 [%] Top-1 Accuracy [%] Top-2 Accuracy [%]
lr 0.01 47.1 ± 4.9 47.3 ± 5.0 67.6 ± 5.0
lr 0.001 52.1 ± 3.5 53.2 ± 3.3 74.4 ± 2.5
lr 0.0001 47.4 ± 1.4 48.8 ± 1.6 69.4 ± 2.9

Table C.3.: Average results of the validation splits at epoch 300. Comparison of
pre-trained weights with random initialized weights of the I3D model
for the Letournel classification. No data augmentation was used.

weighted F1 [%] Top-1 Accuracy [%] Top-2 Accuracy [%]
ImageNet 51.6 ± 3.0 52.9 ± 3.1 74.2 ± 1.6
Charades 51.6 ± 3.1 52.3 ± 3.3 73.0 ± 2.8
Random Initialization 52.1 ± 3.5 53.2 ± 3.3 74.4 ± 2.5
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Table C.4.: Average results of the validation splits at epoch 300. Weighted loss and
oversampling in comparison to the regular I3D model for the Letournel
classification. Data augmentation was used.

weighted F1 [%] Top-1 Accuracy [%] Top-2 Accuracy [%]
weighted loss 54.8 ± 2.0 55.6 ± 2.7 77.4 ± 2.7
oversampling 53.1 ± 4.7 55.7 ± 5.3 75.9 ± 4.0
regular 56.0 ± 3.5 56.8 ± 3.9 74.9 ± 3.7
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